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Supplementary Figure S1. Transcription profile of classical monocytes reveals two molecular 
subtypes of SLE that shows stability in longitudinal data. (A) Different plots show the 
distribution of gender, ethnicity, age, and SLEDAI score in the SLE cohort. Healthy control (HC) 
samples are highlighted in green color and SLE samples are highlighted in magenta color. (B) 
Gating scheme of T-depleted PBMC for sorting of multiple immune cell types. Live cells were 
gated based on their forward side scatter versus side scatter profile followed by single cells 
gating by FSC then SSC and then finally according to their cell surface phenotype as follows, B 
cells (CD19+, TCRa/b-), classical Mo (cMono, TCRa/b-, CD19-, HLA-DR+,CD14+, CD16-), 
intermediate Mo (iMono, TCRa/b-, CD19-, HLA-DR+, CD16+, CD14+), non-classical Mo (ncMono, 
TCRa/b-, CD19-, HLA-DR+, CD16+ CD14 low), plasmacytoid dendritic cells (pDC, TCRa/b-, CD19-, 
HLA-DR+, CD303+, CD11c-) and conventional dendritic cells (cDC, TCRa/b-, CD19-, HLA-DR+, 
CD303-, CD11c+). (C) The MAplot shows on 125 DEGs (P.adj < 0.05 from Benjamini-Hochberg 
test in DESeq2) between SLE and HC in classical monocytes. The top 20 genes (based on P.adj) 
are highlighted in boxes. (D) Functional annotations (generated by clusterProfiler) of DEGs 
between IFNpos-vs-IFNneg (top). The color shows the significance (in terms of P.adj), the size is 
gene counts in annotation, and the X-axis shows gene ratio. The GSEA plot shows significant 
enrichment (NES=0.997; q<0.00001) of 20 IFN-signature genes (IFN-20) in IFNpos vs IFNneg 
comparison. (E) All SLE patients (including longitudinal visits) classified into two groups based 
on the expression of IFN-20 genes (top). Where each gene is presented as row-wise z-scores of 
transcripts per million (TPM) in IFNpos (red), IFNneg (blue) and HC (green); each column 
represents an individual patient. The PCA plot (bottom) shows the two molecular sub-types of 
SLE in different colors. Green, blue, and red represent HC, IFNneg and IFNpos, respectively (we 
used this color scheme in all figures). (F) Scatter dot-plots show plasma level expression (pg/ml) 
of different cytokines. Only first visit samples (n=76) were used in these scatter dot-plots. 
Differences between IFNpos and IFNneg were calculated using unpaired T-test (two-tailed) and 
statistical significance (p-value) levels are shown in each plot (ns: not significant, *: <0.05). 
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Supplementary Figure S2. Combined analysis of differential network and gene expression of 
classical monocytes reveals two known immune modulators (BAFF and IL1RN) and whose 
expression is dysregulated in SLE. (A) Gephi based visualization of the blue module, where 
nodes are sized according to the number of edges (connections), and the edge thickness is 
proportional to the strength of co-expression. Available IFN related genes (IFN-363) are 
highlighted in magenta colors. (B) The plot shows both differentially expressed (DEGs) and 
connected genes (DCGs) from the IFNpos network based green and grey modules only. Where 
the X-axis is the difference in the connectivity (DiffK = K1-K2; K1=connectivity in IFNpos 
network; K2=connectivity in IFNneg network) and the Y-axis is the DESeq2 based fold-change 
(log2). By default, the ‘grey’ module is generated by WGCNA for non-co-expressed genes so it 
shows that green module genes are well-expressed as well as well-connected in the IFNpos in 
comparison to grey module genes. (C) Functional annotations (generated by clusterProfiler) 
from all green module genes in IFNpos network. The color shows the significance (in terms of 
P.adj), the size is gene counts in annotation, and the X-axis shows gene ratio. (D) The DICE 
database-based expression of BAFF and IL1RN in different immune cell types. Where X-axis is 
expression (TPM) level and Y-axis shows different immune cell types. (E) The individual 
expression plot of genes of interest from the green module using IFN response status as well as 
SLEDAI categories. 
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Supplementary Figure S3. IFN-based molecular signature is independent of immune cell 
types. (A-F) PCA plots of different cell types based on IFN signature genes (IFN-20). (G) 
Expression of IFN-20 genes presented as row-wise z-scores of TPM in IFNpos (red), IFNneg 
(blue) and HC (green) for each cell type separately. The expression profile is absent (used blank 
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or ‘NA’) for a few patients in some cell types. (H) Functional annotations (generated by 
clusterProfiler) of all DEGs (IFNpos-vs-IFNneg) from different cell types. The color shows the 
significance (in terms of P.adj) and the size is gene ratio of annotations.  

 
Supplementary Figure S4. Integrated WGCNA (iWGCNA) analysis reveal IFN-driven cross-talk 
between T-cells and B-cells. (A) The network of the black module genes visualized by Gephi. 
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The nodes are colored according to cell of origin and sized according to the number of edges 
(connections), and the edge thickness is proportional to the strength of co-expression. The top 
donut chart shows that 15.58% nodes are IFN-related genes (from IFN-363) and the bottom 
donut plot shows that 42.42% of IFN-363 genes, from at least one-cell type, are present in the 
black module. (B) The Gephi based visualization of BAFF (top) and IL1RN (bottom) connected 
genes in the black module and the corresponding donut chart show the proportion of IFN and 
non-IFN related nodes (based on IFN-363 genes). BAFF from three different cell types (cMo, 
PMN, and pDC) and IL1RN from cMo and PMN are present in the black module. (C-D) Functional 
annotations (generated by clusterProfiler) of genes from each cell type in the blue (C) and 
darkolivegreen (D) modules. The color shows the significance (in terms of P.adj) and the size is 
gene ratio of annotations. (E) A Venn diagram shows the overlap of TFH and TREG signature 
genes with IFN-20 and IFN-363 genes. We only used genes that are exclusively present in TFH 
(265) and TREG (300) signatures. 
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Supplementary Figure S5. TFH and TREG signatures are more enriched in IFNpos patients and 
BAFF expression in multiple cell types correlates with TFH feature. (A) GSEA of TH1 (left), TH2 
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(middle), and TH17 (right) in the transcriptome of IFNpos versus IFNneg in T-cells, presented as 
running enrichment score (RES) for the gene set, from most over-represented genes at left to 
most under-represented at right; values above the plot represent the normalized enrichment 
score (NES) and false discovery rate (FDR)-corrected significance value; Kolmogorov-Smirnov 
test. (B) A heatmap (left) shows expression of the top 30 TREG-related genes, where each gene 
is presented as row-wise z-scores of TPM values in IFNpos (red), IFNneg (blue) and HC (green); 
each column represents an individual patient. Individual expression plots (right) of two TREG 
related genes (FOXP3 and HAVCR2) using IFN response status as well as SLEDAI categories. (C) 
The correlation between GSVA score of TFH and TREG gene set and expression (TPM values) of 
BAFF from different cell types. The Spearman’s correlation with significance value (p-value) is 
given.  
 
 
METHODS 
 
Patient samples 
Healthy volunteers were recruited by the Normal Donor Blood programs at La Jolla Institute for 
Immunology (La Jolla, CA) and The Scripps Research Institute (La Jolla, CA). SLE patients were 
recruited by Division of Rheumatology, University of California, San Diego and Sanguine 
Bioscience. All subjects recruited for this study followed Institutional Review Boards (La Jolla 
Institute for Immunology, La Jolla, CA, University of California San Diego, La Jolla, CA, The 
Scripps Research Institute, La Jolla, CA, and Quorum Review, Seattle, WA) approvals and study 
participants gave written informed consent. SLE Patients were previously diagnosed by a 
clinician and classified as active if they had a SLEDAI score of at least 4 as well as a BILAG score 
of A or B at each study visit. A subset of patient samples (n=10) were collected by Sanguine 
Bioscience and patient information collected via self-reporting of active symptoms. Longitudinal 
samples were collected from 17 SLE patients and 2 healthy individuals from September 2014 
through August 2016 for 1 to 5 follow-up visits (Figure 1G). 
 
Sample collection and cell isolation 
After the volunteers consented to donate their blood sample, 40 mL of venous blood was 
withdrawn from their arms with a needle. 36 mL were collected for sorting and flow cytometric 
analysis (6 x 6 mL BD vacutainer tubes with potassium EDTA (Becton Dickinson, Franklin Lakes, 
NJ) and 4 mL for serum analysis. Whole blood was spun at 2000 rpm for 10 minutes. The plasma 
fraction was transferred to a fresh tube, aliquotted and stored at -80C until analyzed. The cell 
pellets were then resuspended in HBSS without calcium and magnesium and underlayed with 
Ficoll-paque Plus (Fisher Scientific). The tubes were centrifuged at 2000 rpm at room 
temperature for 20 minutes in sealed carriers with the brake off. The top fraction (plasma) was 
removed and frozen for future analysis. The interface layer containing the peripheral blood 
mononuclear cells (PBMC) was collected using a sterile rubber bulb and Pasteur pipette and 
transferred into a new 50 mL conical tube. The collected PBMC were washed in PBS by 
centrifuge at 1800 rpm, at room temperature for 10 minutes. The PBMC were passed through a 
70 µm cell strainer, washed again and then either frozen in 10% Fetal Bovine Serum (GE 
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Healthcare Life Sciences) in DMSO or processed for purification of immune cells subsets by cell 
sorting as described below.  
 
The cell pellets from the Ficoll gradients were used for isolation of PMN by density gradient 
centrifugation. First Red Blood Cells were lysed by resuspending the cell pellet in Gey’s solution. 
Following incubation on ice for 5 min cells the solution was underlayed with 5 mL FBS and then 
centrifuged at 1800 rpm for 5 minutes. The cells were resuspended in PBS, passed through a 70 
µm cell strainer and washed twice with PBS by centrifugation at 1200 rpm for 5 minutes each. 
PMN were resuspended in 30 mL HBSS without calcium or magnesium. 6 mL of 6% Dextran was 
added to the cells and mixed by inversion. Following incubation at room temperature for 30 
minutes the supernatant was transferred to a new tube which was spun for 5 minutes at 1200 
rpm. The pellet containing the PMN was then resuspended with 5 mL H2O and mixed for 5 
seconds before addition of HBSS to a final volume of 50 mL. After a final spin at 1200 rpm for 5 
minutes the PMN were resuspended in 5 mL HBSS, counted, spun again at 1200 rpm for 5 
minutes. 1 mL of TRIZOL LS (Thermo Fisher) was added for each 5 x 106 cells and the PMN 
samples were stored at -80C.  
 
Cell sorting 
Total T cells were isolated from PBMC by magnetic bead-based separation, specifically using 
CD3 DynaBeads (Thermo Fisher) according the manufacturer’s instructions. The purified T cells 
were resuspended in Trizol LS and stored at -80C. The T-depleted PBMC were resuspended in 
FACS buffer (PBS, 2% FBS, 2 mM EDTA and 25 mM HEPES) containing mouse IgG (Jackson 
Immunochemicals) to block non-specific binding. Following incubation for 10 minutes on ice the 
cells were stained with a cocktail of antibodies to TCRαβ, CD11c, HLA-DR, CD16, CD19 
(Biolegend, San Diego, CA), CD14 (Becton Dickinson, Mountainview, CA) and CD303 (Miltenyi, 
Bergisch Gladbach, Germany) (Supplementary Figure 1B). B cells, classical, non-classical, and 
intermediate monocytes, pDC, and cDC were sorted on either a FACSAria or a BD Infux (Becton 
Dickinson). After sorting the cells were washed, lysed in Trizol LS and frozen at -80C 
immediately. Circulating classical CD14hi CD16- Monocytes were isolated from PBMC from 64 
patients with Systemic Lupus Erythematosus (SLE) and 24 healthy subjects (Figure 1A). Five 
additional immune cell types (B-cells, T-cells, cDC, pDC, and PMN) were evaluated from a subset 
of the samples (24 SLE and 12 HC). 
 
Cytokine profiling of plasma 
Plasma was collected from patients. Frozen plasma was shipped to Affymetrix (Vienna, Austria) 
and analyzed in a 34-protein vendor-defined multiplex Procarta Plex-2panel (ThermoFisher, 
Santa Clara, CA) to profile differential plasma protein expression from healthy volunteers and 
patients with SLE. Analytes measured included soluble CD40 ligand, CXCL5, IFN-α2, IFN-β, IFN-γ, 
IL-10, IL-23, IL-12p70, IL-15, IL-17A, IL-17F, IL-18, IL-1α, IL-1b, IL-1RA, IL-2, IL-21, IL-4, IL-6, IP-10, 
CXCL11, MCP-1, RANTES, TGFβ TNFα, VEGF-A, IL-13, Leptin, PAI-1, Resistin, Fas ligand, SDF-1, IL-
22, and GM-CSF. GraphPad Prism8 was used to generate scatter plots and to perform statistical 
analyses of these data. 
 
Bulk RNA sequencing 
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Total RNA was isolated from sorted cell populations using miRNAeasy Micro kit (Qiagen, USA) 
and quantified. 3ng of total RNA was used to generate cDNA following the Smart-seq2 protocol. 
cDNA was purified using AMPure XP beads (0.8x, Beckman Coulter). Next, 1ng of cDNA from 
each sample was used to generate a sequencing library (Nextera XT DNA sample preparation kit 
and index kit, Illumina). The libraries were pooled and sequenced on a HiSeq2500 (Illumina) to 
obtain 50-bp single end reads. Both full-transcriptome amplification and sequencing library 
preparations were performed in a 96-well format to reduce assay-to-assay variability. Quality 
control steps were included after each step to eliminate samples with low quality from 
downstream process. A detailed protocol has been previously published 1. Libraries were 
sequenced on a HiSeq2500 Illumina to obtain a minimum of 10 million 50-bp single-end reads 
(HiSeq SR Cluster Kit v4 cBot, HiSeq SBS Kit v4). 
 
Single-cell sequencing  
Cells from three SLE (IFNpos) patients were sorted into plates to generate sequencing libraries 
following the SmartSeq2 protocol. cDNAs were purified twice with AmPure XT beads (0.8x). 
0.4ng of cDNA from each sample was used to generate a sequencing library using the Nextera 
XT DNA sample preparation kit and index kit from Illumina. Quality control steps were included 
after each step to eliminate samples with low quality from downstream process. A total of 156-
single cell libraries passed all quality control criteria. The libraries were pooled then sequenced 
on a HiSeq 2500 to obtain a minimum of 50 thousand 50-bp single-end reads. A detailed 
protocol has been previously published 1. 
 
RNA-Seq analysis 
Bulk RNA-seq data (FASTQ files) were mapped against the hg38 genome (GRCh38.p7) reference 
using TopHat 2; v2.0.9 (--max-multihits 1 --microexon-search --bowtie1) with FastQC (v0.11.2), 
and Samtools v0.1.19.0 3. Trimmomatic (v0.36) was used to remove adapters 4. We employed 
htseq-count -m union -s no -t exon -i gene_name (part of the HTSeq framework, version v0.7.1 
5) for calculating read counts. To identify differentially expressed genes between two groups, 
we used raw read counts and performed negative binomial tests for unpaired comparisons 
using the DESeq2 (v1.14.1) with package from Bioconductor 6. We have disabled the default 
options of DESeq2 for independent filtering and Cooks cutoff. Non-expressed (no reads in all 
samples) genes have been filtered out before running DESeq2. All genes with Benjamini-
Hochberg–adjusted P value of < 0.05 (based on DESeq2 results) have considered as 
differentially expressed genes (DEGs) in any comparison. The MAplot was generated by using 
ggmaplot function of ggpubr R package. Gene expression values were normalized as transcripts 
per million (TPM) and applied in the Qlucore Omics Explorer 3.3 software package for 
visualization and representation (heat maps, principal component analysis, and GSEA) of RNA-
Seq data. Top-30 TFH/TREG genes were selected based on filter by variance from statistics 
function of Qlucore. Different box-plots and Spearman’s correlation plots were generated by 
GraphPad Prism8 (v8.3.0). 
 
Weighted Gene Co-expression Network Analysis (WGCNA) 
R package WGCNA (v1.61) was used to generate co-expression network from the TPM data 
matrix 7. To develop standard WGCNA network for SLE (Figure 2A), we used 16444 well 



14 
 

expressed genes with TPM >1 in at least 25% of the samples and modules were generated using 
blockwiseModules function (parameters: checkMissingData = TRUE, power = 5, TOMType = 
unsigned, minModuleSize = 30, maxBlockSize = 16444, mergeCutHeight = 0.25). The 
pickSoftThreshold function was used to optimize soft-thresholding power (β) by choosing the 
lowest power for which the scale-free topology fit index reaches 0.90. The default ‘grey’ 
module generated by WGCNA for non-co-expressed genes. As each module by definition is 
comprised of highly correlated genes, their combined expression may be usefully summarized 
by eigengene profiles, effectively the first principal component of a given module. A small 
number of eigengene profiles may therefore effectively ‘summarize’ the principle patterns 
within the cellular transcriptome with minimal loss of information. This dimensionality-
reduction approach also facilitates correlation of ME with traits. Different clinical features (IFN-
status, age, ethnicity, flare, severity, SLEDAI score, years of disease, affected renal, BILAG 
severity, and different treatments) were used as a trait and correlated with MEs. Significance of 
correlation between this trait and MEs was assessed using Spearman’s correlation and p-values. 
 
In the differential network analysis (Figure 2C), we used standard WGCNA-based approach to 
generate co-expression networks for IFNpos and IFNneg separately. For each network, genes 
were clustered into a dendrogram and modules were assigned by blockwiseModules function 
(parameters: checkMissingData =TRUE, power = 6, TOMType = unsigned, minModuleSize = 30, 
maxBlockSize = 16444, mergeCutHeight = 0.25). In order to make both IFNpos and IFNneg 
networks comparable, we used same soft-thresholding power (β=6). Furthermore, network 
connectivity values using softConnectivity function (power=6) have been calculated for each 
gene where connectivity (also known as degree) is defined as the sum of connection strengths 
(based on co-expression) with the other genes in the network. The difference between the 
connectivity (DiffK = K1 – K2) for each gene between IFNpos (K1) and IFNneg (K2) was 
calculated (as described in 8). Genes with at least ±0.25 difference (K1-K2) in connectivity (DiffK) 
were considered as differentially connected genes (DCGs). 
 
Integrated Weighted Gene Co-expression Network Analysis (iWGCNA) 
In the integrated WGCNA (iWGCNA) approach (Figure 4A), we have generated a single WGCNA 
network by merging transcriptome profiles of six different cell types (patient-matched) 
together. We used a total of 25 samples (10 HC, 8 IFNneg, and 7 IFNpos) from six different cell 
types. Highly correlated genes from combined transcriptomes across six immune cell types 
were identified and a total of 78 modules were generated using blockwiseModules function 
(parameters: checkMissingData = TRUE, power = 6, TOMType = unsigned, minModuleSize = 50, 
maxBlockSize = 101282, mergeCutHeight = 0.40). In order to find gene set specific important 
modules, we have measured the significance of a particular gene set (e.g. DEGs between IFNpos 
and IFNneg) by hypergeometric test using phyper R function and further p-values were adjusted 
for multiple test correction using p.adjust R function (method=fdr).  
 
To visualize co-expression networks, we used the function exportNetworkToCytoscape at 
weighted = true, threshold = 0.05. A soft thresholding power was chosen based on the criterion 
of approximate scale-free topology. Networks were generated in Gephi (v0.9.2) using 
Fruchterman Reingold and Noverlap functions 9. The size and color were scaled according to the 
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average degree as calculated in Gephi, while the edge width was scaled according to the 
WGCNA edge weight value. 
 
Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) 
GSEA determines whether an a priori defined ‘set’ of genes (such as a signature) show 
significant cumulative changes in gene expression between phenotypic subgroups 10. We 
applied GSEA using Qlucore Omics Explorer 3.3 software package for assessing significant 
enrichment of specific gene sets (eg. IFN signatures or T cell subtypes) in one group relative to 
that in another group (eg. IFNpos versus IFNneg). In summary, first all genes are ranked on the 
basis of their differential expression (TPM-based) in one group versus their expression in 
another group. Thereafter, a running enrichment score (RES) is calculated for a provided gene 
set on the basis of how often its genes appear at the top or bottom of the already ranked 
differential list. A default of 1,000 random permutations of the phenotypic subgroups are used 
to establish a null distribution of RES against which a normalized running enrichment score 
(NES) and false-discovery-rate-corrected q values are calculated using Kolmogorov-Smirnov 
statistic. We ran GSEA with different gene sets of TH1 11, TH2 11, TH17 11,12, TFH 13, and TREG 14 
from published studies (Supplementary Table S7) after removing IFN-20 and IFN-363 related 
genes (Supplementary Figure S4E) to uncover only T-cell subtypes specific enrichments. These 
gene signatures were selected to test the null hypothesis that IFN based sub-groups (IFNpos 
and IFNneg) did not show significant enrichment for different T cell sub-types. 
 
In order to establish correlation between two different gene sets or groups, we need to 
calculate enrichment score for each sample. The GSVA 15 estimates variation of enrichment of 
particular gene set over a sample population and provides enrichment score for each sample. 
GSVA was implemented using gsva function of R package GSVA (v1.20.0) with rnaseq=TRUE 
parameter and it provided GSVA scores that we used to correlate different gene sets with BAFF 
expression (Figure 1D; Figure 1E; Supplementary Figure S5C).  
 
Gene-Ontology (GO) based functional annotations 
The biological relevance of important genes from different analyses was further investigated 
using the clusterProfiler 16. To functionally annotate genes (eg. DEGs or module genes) from 
one cell type, we used enrichGO function (parameters: OrgDb = org.Hs.eg.db, ont = BP). We 
also removed redundant GO-terms (parameters: cutoff=0.40, by=p.adjust, select_fun = min, 
measure = Wang) with more than 40% similarity cut-off. In the plots (Supplementary Figure 
S1D; Supplementary Figure S2C), color shows the significance (in terms of P.adj), size is gene 
counts in annotation, and X-axis shows gene ratio. To compare multiple cell types, 
compareCluster function (parameters: fun = enrichGO, OrgDb = org.Hs.eg.db, ont = BP) was 
used to generate Gene-Ontology based comparative functional annotations of different cell 
types. We used all available genes from different cell types in a module to run clusterProfiler 
and only displayed cell types that have significant enrichment of any GO-term. In multi-cell 
plots (Figure 3G; Figure 4D; Figure 4F), color displays the significance (in terms of P.adj) of 
particular GO-terms and size shows the gene ratio of annotations. 
 
Quantification and statistical analysis 
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Statistical analyses were performed using GraphPad Prism8 (v8.3.0). The Spearman’s 
correlation coefficient (r value) was used to access the significance of correlations between the 
levels of any two components of interest. R packages were applied with R version 3.3.3 using 
x86_64-pc-linux-gnu (64-bit) platform under CentOS Linux 7 (Core). 
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