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ABSTRACT 

Keri Anne Barron: Ceramide Synthase 6 in Metabolic Response to Dietary Fat and Folic Acid 

(Under the direction of Natalia Krupenko) 

 

 

Ceramides, a class of bioactive lipids, are important regulators of cellular metabolism 

mediating response to nutrient stress. Recent work from our laboratory demonstrated that, in 

cultured cells, folate stress response is mediated by ceramide synthase 6 (CerS6), a sphingolipid 

enzyme producing C16-ceramide. To test the hypothesis that alterations in dietary FA will induce 

a CerS6-dependent response in mice, we evaluated the sphingolipid and metabolomic responses 

in WT and CerS6 KO mice. We also investigated the role of dietary fat in the response to folate 

stress in WT and KO mice. This dissertation sought to characterize the sphingolipid and 

metabolomic responses in wild type (WT) and CerS6 knockout (KO) mice to both short-term 

alterations in dietary FA as well as to long-term changes in dietary FA combined with high fat 

diet. 

As expected, CerS6 KO mice compared to WT mice exhibited significant differences in 

liver sphingolipids, free fatty acids and phosphatidylethanolamines, among other lipids. Inducing 

folate stress resulted in changes to sphingolipid pools in the liver with significantly different 

responses between sexes. Because folate has been shown to influence lipid metabolism, we 

further challenged CerS6 KO and WT mice by altering folate levels in a high fat diet. We found 

that the low FA, high fat diet led to increased weight gain, hepatic lipid droplet accumulation, 

and elevated plasma sphingolipid species in male WT mice only. CerS6 KO mice were mostly 
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protected from diet-induced weight gain and lipid droplet accumulation. Additionally, they 

exhibited significantly lower levels of many plasma sphingolipid species indicating that CerS6 

plays a critical role in shaping the plasma sphingolipid profile. Interestingly, the presence of too 

little or too much FA was similarly detrimental in male WT mice whereas female mice 

demonstrated a protection on the FD diet.  

In summary, our studies demonstrate that dietary FA affects hepatic and plasma 

sphingolipid profiles after short- and long-term consumption and that CerS6 is involved in the 

whole-body response to folate stress. These results underscore the role of ceramides in mediating 

nutrient challenges as well as the need to investigate the effects of FA supplementation on tissue 

metabolomes. 
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CHAPTER 1: INTRODUCTION 

Ceramides (Cer) are bioactive lipids regulating multiple cellular processes and they have 

been implicated in the development and progression of several disease states [1]. As such, they 

are gaining attention as potential biomarkers for diseases including atherosclerosis [2] and 

colorectal cancer [3]. Ceramide analogs and inhibitors are also being developed as potential 

treatment modalities for conditions including obesity and insulin resistance [4, 5]. While these 

studies are producing promising data about the effectiveness of these new therapeutic strategies, 

the effect of diet on ceramide metabolism and therapeutic interventions cannot be ignored.  

 In this dissertation, we have specifically focused on the role of Ceramide Synthase 6 

(CerS6), one the six enzymes producing ceramides. CerS6 generates C14- and C16-ceramides and 

is expressed in most tissues at low levels. C16-ceramide is considered to be a lipotoxic mediator 

of metabolic stress based on a plethora of evidence indicating the detrimental role it plays in both 

cells and rodent models [6]. As a result, suppression of C16-ceramide production is often viewed 

as a strategy for overcoming negative impact of stressors. However, the role of CerS6 in cellular 

homeostasis is not well defined and knocking out CerS6 can provide important information 

about the functions of this enzyme and its product C16-ceramide at the whole-body level. 

Ceramides are known to respond to nutrient stress, including withdrawal of magnesium [7, 8], 

treatment with a synthetic retinoid [9] or vitamin E metabolite, γ-tocotrienol [10], and increased 

supply of fatty acids [11]. Changes in ceramide levels in response to the aforementioned 

nutrients occur via several mechanisms including upregulation of de novo ceramide biosynthesis 

as indicated by increased dihydroceramide species [9, 10] and through alterations of the activity 
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of enzymes involved in sphingolipid metabolism [7].  Furthermore, CerS6 is directly involved in 

the cellular response to folate stress, including folate withdrawal [12]. The removal of folate 

from cell culture media resulted in elevation of CerS6 and increased cellular C16-ceramide 

concentrations, as well induction of apoptosis [12].  

Since most of the data on ceramide response to nutrient stress were obtained in cultured 

cells, we sought to determine the ceramide response to dietary folate stress in an animal model. 

In Chapter III, we investigate the metabolic alterations resulting from short-term dietary 

exposure to both low and high folate supplementation in CerS6 knockout (KO) and wild-type 

(WT) mice. We hypothesized that C16-Cer levels would increase in wild type mice after exposure 

to a folate-deficient diet, congruent to the cell culture findings, but also that CerS6 KO mice 

would have reduced C14- and C16-Cer that will not change due to folate supplementation and may 

be compensated by increases of other ceramide species. Our metabolomics results revealed that 

both loss of CerS6 and dietary folate supplementation that was too high or too low resulted in 

significant changes of several lipid classes, including sphingolipids. In Chapter IV, we sought to 

characterize the role of CerS6 in response to HFD in mice by comprehensively examining body 

composition, indirect calorimetry, food and water intake, plasma ceramide concentrations, as 

well as liver and plasma metabolomes. Based on results of published studies, we hypothesized 

that CerS6 KO mice would be protected from high fat diet-induced weight gain with further 

protection demonstrated in the metabolomes of liver and plasma tissues indicating an overall 

protective effect of lowering C16-Cer levels beyond sphingolipids. In Chapter V, we investigated 

plasma ceramide response to either low or high folate intake combined with a high fat diet to 

evaluate the effects of long-term exposure to suboptimal folate supplementation and high fat in 

plasma. This allowed us to understand dietary influence of the ceramide profile of WT mice but 
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also begin to assess how diet may affect the efficacy of ceramide-related inhibitors or drugs 

designed to lower C16-Cer levels through studying the effects of folate stress in CerS6 KO mice, 

which lack the ability to respond to nutrient stress through C16-Cer. We hypothesized that a high 

fat diet combined with low folate intake would increase plasma ceramide levels in addition to 

causing greater weight gain and fat mass accumulation. The results revealed differential effects 

of folate consumption between male and female mice, however CerS6 KO mice, regardless of 

sex, were protected from many of the detrimental effects of high fat diet consumption.  

This is the first study to directly investigate micronutrient alterations in an animal model 

with the goal of evaluating compensatory ceramide response. Our data provide valuable 

information about the response of plasma ceramides to dietary intervention, which is critical if 

ceramides are going to be utilized as biomarkers or as therapeutics for common diseases. Taken 

together, these results indicate that both hepatic and plasma ceramide pools respond to dietary 

folate consumption and that response is sexually dimorphic. These results warrant further 

investigation of ceramide response to other nutrients, as well as call for human studies to 

determine reference ceramide intervals for each sex before plasma ceramides could be used as a 

biomarker or disease risk scores.  
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CHAPTER 2: BACKGROUND 

Background 

Folate function and its link to multiple metabolic pathways 

Folate, one of the B-vitamins, is a generic name for a family of chemically similar 

compounds that function as carriers of one-carbon groups and are involved in the biosynthesis of 

nucleotides and the metabolism of amino acids [13, 14]. A folate molecule consists of a pterine 

ring conjugated to p-aminobenzoic acid which is linked via amide bond to one or multiple 

glutamic acid residues linked by peptide bonds via -carboxyl groups [13]. It is an essential 

micronutrient as humans are unable to synthesize folate de novo and therefore must acquire it 

from their diet [13]. In nutritional sciences the term folate is used for a group of natural 

compounds related to folic acid which are found in green leafy vegetables, whereas folic acid 

(FA) is the name for the synthetic vitamer which contains a single glutamic acid residue and has 

pterine ring in the oxidized state [13]. FA is not an active coenzyme and must undergo several 

conversion steps within the cell in order to become a coenzyme [14], but FA is highly stable and 

bioavailable, which explains its wide use as a pro-vitamin [15, 16].  Folate ingested from the diet 

mainly exists as polyglutamates and must be hydrolyzed to monoglutamates in the intestinal 

mucosa before being transported for further metabolism [14]. Several different species of folate 

are important in one carbon metabolism, each differing in the presence and oxidation state of the 

one-carbon group attached to the N5 and/or N10 positions of the tetrahydrofolate (THF) 

backbone [13]. Folate has important roles in the synthesis of purine and pyrimidine precursors of 

nucleic acids [14], the metabolism of methionine, serine, glycine and histidine, and for the 
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formation of methyl group donors which are required for normal metabolism and gene regulation 

[14]. 10-formyl-THF is used in two reactions of de novo purine biosynthesis, and 5-methyl-THF 

(5-MTHF) supports methylation reactions. The methyl group on 5-methyl-THF is transferred to 

homocysteine to produce methionine which is converted to S-adenosyl-methionine (SAM), a 

universal methyl group donor. SAM can then methylate proteins, lipids, and nucleic acids 

(deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)), in addition to providing methyl 

groups for biosynthetic reactions such as the synthesis of hormones and other small molecules 

[17]. As SAM donates a methyl group to its target, it becomes S-adenosyl-homocysteine (SAH) 

which is further metabolized to homocysteine. 5-MTHF can remethylate homocysteine to 

methionine, which is further converted to SAM, which can be used for next methylation. Thus 5-

MTHF completes the cycle and prevents accumulation of homocysteine and possibly the harmful 

effects associated with homocysteine accumulation [14]. Thus, folate is a critical piece to several 

metabolic pathways including nucleotide biosynthesis, amino acid metabolism, and methylation 

reactions via supporting adequate SAM/SAH levels [17]. Therefore, maintaining an adequate 

supply of folate is required for normal cell function, and suboptimal folate supply is linked to 

adverse health effects [18]. An overview of folate metabolism and its links to other metabolic 

pathways are shown in Figure 2.1.   
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Figure 2.1 Folate and folic acid in one-carbon metabolism 
 

Folate deficiency affects many cellular processes 

Inadequate intake of folate results in folate deficiency which has widespread effects due 

to its role in many cellular processes. Folate deficiency can lead to altered protein expression 

[19-21], increased DNA damage and chromosomal fragility [22, 23], impaired cellular division 

[24], and even altered melatonin secretion [25] and disturbances in circadian rhythm [26]. Folate 

inadequacy induces both DNA hypomethylation and DNA strand breaks hyperhomocysteinemia 

as homocysteine generated by SAH hydrolysis cannot be remethylated to methionine [26], and 

this is associated with an increased risk of vascular disease [23, 27]. Hyperhomocysteinemia can 

also result in reduction of SAM levels and impaired DNA methylation [28-30]. Folate deficiency 

perturbs lipid metabolism, leading to accumulation of triglycerides in the liver [31] and changes 

in expression of genes involved in cholesterol biosynthesis [32] and fatty acid metabolism [26]. 

Folate deficiency is also considered a public health issue because inadequate consumption of 

folate during pregnancy significantly increases the risk of neural tube defects in the developing 

fetus [33].  
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Severe folate deficiency is not a common micronutrient deficiency in industrialized 

nations [34], however, there are several conditions under which folate is not metabolized 

correctly or efficiently which can result in functional deficiency. Poor absorption in the intestines 

may result in significantly reduced levels of folate being delivered to the liver [14]. Additionally, 

if the pH of the intestine is altered, there could be incomplete deconjugation of folate which 

would reduce its absorption [35, 36]. Therefore, despite adequate folate consumption, the 

downstream alterations in digestion, absorption and transport of folate could result in 

significantly decreased levels of folate in the liver and other tissues [14]. Additionally, increased 

demand such as during physical activity or pregnancy can cause deficiency if intake is not 

appropriately increased [14]. Pathological liver conditions, drug interactions, and genetic 

mutations also contribute to functional folate deficiency [14]. The most studied genetic 

polymorphism in folate metabolism is 677C→T in methylenetetrahydrofolate reductase 

(MTHFR) which catalyzes the reaction producing 5-methyl-THF. The TT genotype in vitro 

enzyme activity was reduced by 75% compared to that of wild-type enzyme [14]. This mutation 

affects 5-20% of the populations studied [37]. There is also a 19-base pair deletion in 

dihydrofolate reductase (DHFR) gene which can alter folate metabolism [14] and up to 5-fold 

differences in the activity of DHFR has been reported among individuals [38]. Functional folate 

deficiency can also arise from inadequate intake of other B-vitamins which are involved in one 

carbon metabolism, including B2, B6 and B12. As such, if folate levels are low this can also affect 

the metabolism of B2, B6 and B12 [34]. Alternatively, if levels of these vitamins are insufficient, 

it could result in altered folate metabolism. Mild inadequacies of these B-vitamins commonly 

occur in industrialized nations and depletion of one often leads to biochemical phenotypes 

characteristic of the deficiencies of the others [34], meaning inadequate intake of B12 could cause 
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functional folate deficiency in liver tissue. Approximately 18-25% of adolescents and adults 

have blood indicators of B6 status that fall below the accepted lower limits in US and western 

Europe while 15-20% of elderly populations are thought to have marginal B12 status [34]. 

Despite presumed adequate folate intake, it is possible that these groups may experience 

functional folate deficiency.  

Adverse effects of excessive folate intake 

Mandatory fortification of grain foods with FA began in the United States in the 1990s 

[39] to help reduce the incidence of neural tube defects. This effort was unique in that the target 

population for the fortification is many times smaller than the population affected by folic acid 

fortification. There are serious concerns regarding the consequences of excessive consumption of 

folic acid. While consumption of the natural form of folate is rarely above the upper limit, a 

combination of fortified foods, supplements, and multivitamins has been shown to result in 

significant accumulation of unmetabolized FA in cells [38]. Data from the National Health and 

Nutrition Examination Survey found that approximately 25% of children and 5% of adults over 

50 years of age consume more than the recommended upper limit for FA [40-42]. Excessive folic 

acid intake can alter the flux through one carbon metabolic pathways and gene expression 

patterns, all of which can result in liver injury [37], as liver is the primary site of folate 

metabolism and the site of most folate-dependent enzymes [43]. As such, alterations in folate 

metabolism are likely to affect the liver before other tissues. Studies have found that excessive 

intake of FA increases the incidence of certain cancers [44, 45] potentially through 

overwhelming folate-metabolizing pathways, resulting in increased production of nucleotides 

which allows cells to divide rapidly. It is also possible that increased blood levels of 

unmetabolized FA may interfere with folate transport and metabolism or competitively inhibit 

natural folates from binding to enzymes and carrier proteins [46]. High intake of FA may also 
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lead to the accumulation of dihydrofolate which inhibits thymidylate synthase and MTHFR, 

leading to decreased levels of thymidylate and 5-MTHF. This shortage of thymidylate can impair 

DNA integrity and cellular division and the lack of 5-MTHF decreases methionine biosynthesis 

which can affect DNA methylation. Christensen et al. found that MTHFR activity was reduced in 

the liver of mice fed a high folic acid diet [37], confirming findings from early studies indicating 

that unmetabolized folic acid may contribute to MTHFR deficiency by inhibiting its activity 

[47]. High FA consumption may alter the expression of genes involved in one-carbon 

metabolism and lipid metabolism [37, 48]. Studies have also found a link between circulating 

unmetabolized FA levels and lower cognitive test scores [49] and impaired immune function in 

humans [50]. In many ways, excessive folic acid consumption is metabolically similar to folate 

deficiency [51, 52].  

Folic acid affects lipid metabolism 

Folate is at the center of one carbon metabolism, including nucleotide biosynthesis and 

methylation reactions, but it also affects lipid metabolism. Studies have found both negative and 

positive effects of FA supplementation on mitigating the consequences of a high fat diet (HFD). 

When mice were fed HFD that was supplemented with FA, they had lower blood glucose 

concentrations, decreased inflammation, reduced serum cytokines, and altered adipose tissue 

gene expression  [53]. It was suggested that FA supplementation may alter adipocyte function 

and insulin resistance by changing DNA methylation and messenger RNA (mRNA) expression 

of obesity-relevant genes. Sid et al. reported that FA supplementation had no effect on HFD-

induced body weight gain in mice [54]. However, it did attenuate the increase in blood glucose 

levels and reduced total and free cholesterol without changing triglyceride content of the liver 

[54]. Furthermore, FA supplementation along with HFD has been shown to protect against liver 

injury and preserve the structural integrity of the liver [55].  
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In contrast to studies demonstrating a positive effect of FA in reducing detrimental 

effects of HFD, several studies have demonstrated negative effects of folic acid supplementation. 

Kelly et al. found that excess FA on HFD increased weight gain, adipose tissue mass, and 

markers of inflammation compared to adequate FA intake [48]. These effects were not seen with 

excess FA on a low-fat diet. In cell culture models, FA increased triglyceride accumulation in 

3T3-L1 cells, which can differentiate into adipose tissue, by inducing peroxisome proliferator-

activated receptor gamma (PPARγ), a key regulator of adipogenesis and promoter of lipid 

storage [56]. Furthermore, rats fed HFD with excess FA exhibited impaired glucose clearance, 

increased adipocyte size, increased mRNA levels of triglyceride synthetic genes, and increased 

expression of PPARγ in adipose tissue, but there were no differences in plasma triglycerides or 

cholesterol in rats [48]. Monocyte chemoattractant protein 1 (MCP-1) levels, a marker of 

inflammation, along with protein and mRNA levels of tumor necrosis factor alpha (TNFα) were 

also higher in the adipose tissue of rats fed a high fat-excess folic acid diet [48].  In a separate 

study, FA supplementation in rats decreased PPARγ promotor methylation in the liver leading to 

increased PPARγ gene expression [57]. The authors concluded that excess dietary FA 

exacerbates fat mass gain, adipose tissue inflammation and systemic glucose intolerance in rats 

fed HFD. The differential effects of FA in rodent models may be due to the life stage, animal 

model, duration and amount of FA, dietary composition, or specific tissues being investigated. 

However it should be noted that translating findings in rodents to humans is difficult because 

rodents can efficiently metabolize folic acid and may be able to tolerate higher doses compared 

to humans [54]. 

The relationship between FA and lipid metabolism has been studied in humans in 

addition to the aforementioned in vivo and in vitro studies. Obese patients demonstrated low 
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folate levels in circulation [58-60], independent of dietary intake [61] and studies have found an 

inverse association between serum folate levels and body mass index (BMI) [62].  Low maternal 

folate levels were also associated with an increased risk of obesity, insulin resistance (IR), and 

type 2 diabetes in the offspring later in life [63, 64]. Folic acid supplementation has also been 

found to decrease IR and plasma levels of homocysteine while improving blood glucose control 

in obese patients with type 2 diabetes [65-67]. As such, decreased folate concentrations may 

influence susceptibility to metabolic syndrome [68, 69]. Interestingly, there are studies 

supporting the beneficial effects of supplementation on marginally adequate populations. When 

97 young adult Caucasian individuals were grouped according to their folate intake (<40% 

versus 40-90% Reference Daily Intake), FA supplementation reduced total cholesterol levels in 

both groups [70]. Folic acid supplementation also resulted in significantly improved kidney 

function in the group with low folate in their diet indicating beneficial effects of mild FA 

supplementation [70]. In patients with metabolic syndrome, folate supplementation improved IR 

and endothelial dysfunction while decreasing homocysteine levels [68, 69]. It is likely that the 

benefits of FA supplementation may be lessened or absent in people that have adequate levels of 

folate. Elucidating the mechanisms connecting folate and lipid metabolism should be prioritized 

as folate may counteract the negative effects of HFD. Consumption of HFD contributes to the 

development of obesity and metabolic syndrome which affects nearly 40% of US adults [71]. 

Therefore, if folate is proven to be a safe and effective way to restore proper metabolism, it could 

significantly help many at-risk individuals.  

Mechanisms connecting folate and lipids 

 The mechanisms linking folate to lipid metabolism are not fully known, but several 

pathways have been suggested. Phospho-5’ AMP-activated protein kinase (AMPK) protein 

levels were markedly reduced in the liver of mice fed a high fat diet, while total AMPK protein 
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levels remained unchanged indicating inactivation of AMPK under high fat feeding [54]. 

Supplementation with FA increased AMPK phosphorylation and consequently its activation in 

the liver. The authors provided results from both animal and cell culture models indicating a role 

of FA in activating AMPK. They also found that FA supplementation increased levels of AMP 

which could further activate AMPK, a known regulator of glucose and cholesterol metabolism 

[54]. Another study also found that methyl donor supplementation increased activity of AMPK 

and suggested that AMPK may bind SAM directly and therefore act as a SAM-sensor [72].  

Several possible mechanisms connecting folate to a negative effect on lipid metabolism 

have been suggested. Feeding mice HFD for 8 weeks resulted in hepatic lipid accumulation and 

decreased folate transporter via downregulation of NRF-1 [73]. There was also a significant 

downregulation of reduced folate carrier (RFC) protein in the liver of mice fed HFD, whereas 

expression of other transporters was not affected. Excessive FA may induce pseudo-MTHFR 

deficiency which may render hepatocytes more sensitive to phospholipid and lipid disturbances, 

leading to liver injury [37].  It is also possible that excessive FA promotes lipid accumulation by 

impairing fatty acid oxidation through decreased expression of carnitine palmitoyl transferase 1 

(cpt1a)[74], an enzyme essential for fatty acid oxidation. Choline, a contributor to one carbon 

metabolism, may also be an important connection between folate and lipids. Folate deficiency 

may reduce hepatic phosphocholine biosynthesis which activates sterol regulatory element-

binding protein 1a (SREBP1a) to stimulate de novo fatty acid synthesis [75]. Supporting this 

notion, the consequences of FA deficiency are also more evident when methionine and choline 

are also depleted in the diet [76].   
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Sphingolipid metabolism  

Sphingolipids, a class of lipid molecules having a sphingoid base in their structure, 

comprise one of the major classes of membrane lipids [77, 78]. Ceramides, sphingosine (Sph), 

sphingomyelins (SM) and glucosyl-ceramides (GlucCer), among others, are members of this 

class (Fig 2.2) [78-80]. 

 
Figure 2.2 Basic structure of ceramide, sphingomyelin and glucosyl-ceramide 
 

In the past, significance of these lipids was linked purely to their role as structural 

components of biological membranes. Changes in the membrane lipid composition were shown 

to affect many cellular functions including vesicular trafficking, cell-to-cell communication and 

signal transduction [81]. In addition to their role as structural components of cellular membranes 

[78, 82], sphingolipids are increasingly studied as bioactive signaling molecules and as important 

players in the development and progression of diseases, including cancer, type 2 diabetes, and 

Alzheimer’s disease [80, 83, 84]. Sphingolipids are currently recognized as regulators of key 

cellular processes such as growth, differentiation, survival, senescence, immune cell trafficking 

and apoptosis [1]. The significance of sphingolipids is further underscored by the fact that 
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silencing of genes or proteins in sphingolipid metabolism results in embryonic lethal phenotypes 

in mouse models, including knocking out glucosyl-ceramide synthase [85], both isoforms of SPT 

[86], or CERT, the ceramide transfer protein [87]. 

Ceramide synthesis and isoforms of ceramide synthases 

Ceramides are considered the building blocks of sphingolipids because they can be 

modified and converted to other sphingolipid species [77, 88, 89].  Ceramides are formed from a 

sphingoid-base connected to an acyl chain via an amide bond. There are two pathways by which 

ceramides are synthesized- the de novo pathway and the salvage pathway. In de novo 

biosynthesis, serine and palmitoyl-coenzyme A (CoA) are combined via a condensation reaction 

by serine palmitoyl transferase (SPT) to produce 3-ketosphinganine which is then reduced to 

sphinganine via 3-ketosphinganine reductase. Sphinganine is acylated via sphinganine N-Acyl 

transferase/Ceramide Synthase (CerS) to produce dihydroceramide (dhCer) which is further 

reduced to ceramide via dihydroceramide desaturases. Acyl-CoA-dependent ceramide synthesis 

was first described in 1966, however more than 30 years passed before the genes responsible for 

dhCer and Cer synthesis were identified in yeast [90, 91]. Additionally, ceramides can be 

generated through the salvage pathway which converts sphingosine-1-phosphate (S1P) to 

sphingosine then to ceramide, also via CerS. These multiple pathways converge at ceramide 

which serves as a hub in metabolism [1] (Fig 2.3).  Over 28 distinct enzymes act on ceramide 

either as a substrate or product [78, 92], and the combinatorial synthesis with several enzymes 

collaborating to produce more than 200 distinct mammalian ceramides indicates a high degree of 

specialization and regulation within ceramide metabolism [1]. De novo ceramide synthesis 

occurs primarily in the endoplasmic reticulum (ER) [93-99], however ceramides can be 

generated in the plasma membrane [100], lysosome [101] and mitochondria [102] via the action 

of sphingomyelinases (SMase) and neutral glucocerebrosidases [103-105]. Variation is 
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introduced into ceramide species through the chain length and degree of saturation in the acyl 

chain that is linked via SPT [99, 106].  

 
 

Figure 2.3 Ceramide is the hub of the sphingolipid pathway, formed de novo and through 

the salvage pathway 
 

Furthermore, each ceramide synthase isoform, of which there are 6, exhibits a high 

specificity toward the acyl CoA chain length used for N-acylation, creating unique species [77, 

80, 97-99, 107-109] with different functions. The preferred acyl chain length for each CerS 

isoform is shown in Table 2.1. Ceramides can be transported from the ER, where they are 

primarily synthesized, to other compartments including the mitochondria or the Golgi apparatus 

for further processing through vesicular transport or by the ceramide transfer protein (CERT) 

[96]. However, CERT has a defined specificity towards different acyl chain ceramides [110], 

indicating a further level of regulation which determines the availability and presence of certain 

ceramide species.  
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Isoform Acyl-Chain length preference 

CerS1 C18 

CerS2 C20-26 

CerS3 C22-26 

CerS4 C18-20 

Cers5 C16 

CerS6 C14-16 

Table 2.1 The acyl chain length specificity of the six isoforms of ceramide synthase 
 

Ceramide Synthases are multi-spanning membrane proteins [97-99] with several 

similarities but also distinct differences [107, 111]. The six isoforms of Ceramide Synthases 

(CerS1-6) carry out the same chemical reaction, but differ in their affinity for the specific acyl-

CoA used as highlighted in Table 2.1 [77]. Each tissue has a unique expression profile of the 

isoforms which can change upon stimulus [80]. CerS expression profiles have been investigated 

in humans and mice. CerS1 is primarily expressed in the brain [98, 99, 112] and skeletal muscle 

[109] and functions in cancer development, regulating sensitivity to chemotherapeutic drugs 

[113, 114], and promoting insulin resistance in skeletal muscle [109]. CersS2 is widely 

distributed in human tissues [115], producing very-long-chain ceramides, and appears to have 

diverse functions including regulation of ER stress [116], control of adipocyte signaling and 

amino acid metabolism [117], and triggering lung inflammation [84]. CerS2 has also been 

suggested to be critical for maintaining liver homeostasis [117] and may act more similar to a 

house keeping gene than a stress response gene [106]. CerS3 is expressed primarily in skin and 

testis [118, 119] and is important in maintaining the water permeability barrier of skin [120]. 

CerS4 is expressed highest in skin, leukocytes, heart, and liver [112] and was elevated in a 
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mouse model of Alzheimer’s disease [121]. CerS5 synthesizes C16-Cer and is highly expressed in 

the lung and brain [77]. Finally, CerS6, which is highly homologous to CerS5, also produces 

C14- and C16-Cer. CerS6 has been found to be expressed in most tissues at low levels [99, 112, 

122] but is elevated upon stress stimuli [11, 123-125].  

Regulation of ceramide synthesis 

 Because of the diverse nature of ceramides and their many functions, a high degree of 

regulation is required to maintain proper cellular-, tissue-, and whole-body homeostasis. 

Ceramide Synthase mRNA expression is not always correlated with protein levels, indicating 

that post-transcriptional and post-translational mechanisms affect protein levels [80, 82, 126, 

127]. Correspondingly, the respective ceramide species also do not correlate with CerS mRNA 

levels, indicating further regulatory mechanisms [99, 112, 128]. Ceramide Synthase proteins may 

also be phosphorylated or glycosylated depending on the tissue being examined [82, 129], 

although glycosylation is dispensable for CerS6 activity [99].  CerS2-6 were found to be 

phosphorylated at the cytoplasmic C-terminal regions [129] and phosphorylation was important 

for the catalytic activity of CerS2 but only slightly increased the activities of CerS3-6. It is 

possible that hyperactivation of CerS by phosphorylation may worsen conditions in which 

sphingolipid species are already elevated, such as obesity and IR [130]. Interestingly, the 

phosphorylation sites in the C-terminal regions of CerS2-6 are mostly conserved between mouse 

and human proteins [129] and the catalytic components of yeast ceramide synthases, longevity-

assurance gene 1 (Lag1) and its homolog longevity-assurance gene cognate 1 (Lac1), are also 

phosphorylated by casein kinase 2 at their C-terminal regions [131], similar to the human and 

mouse CerS.  This suggests that CK2-dependent phosphorylation of CerS is an evolutionarily 

conserved mechanism to regulate CerS [129].  However, yeast Lac1 and Lag1 are also 
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phosphorylated at the N-terminal regions via the actions of a separate kinase [132] which was 

not found to affect mouse and human CerS proteins [129].  

De novo ceramide synthesis can be regulated by substrate availability, the quantity of 

CerS mRNA and protein, and the activity of CerS [82]. Additionally, the availability of the acyl-

CoA substrate may be less important in determining the ceramide composition of a specific 

cell/tissue because CerS expression and activity may compensate for any lack or overabundance 

of availability [82]. An exploratory study seeking to better understand ceramide metabolism in 

mice measured ceramide species in several tissues, along with mRNA and protein expression 

[82]. They found highest total ceramide levels in the brain and lowest total ceramide levels in the 

heart, lung, and spleen. Dihydroceramides were equally low in all tissues investigated and there 

was a clear difference in the distribution of long-chain (C14-20) and very-long-chain (C22-26) 

ceramides in tissues such that long-chain ceramides were most abundant in the brain and 

intestines whereas very-long-chain ceramides were most abundant in the lung, heart, kidney, 

liver, and spleen. This suggests that each tissue has a distinct ceramide composition, and it is 

possible that different cell types within a tissue also have a unique ceramide distribution [82]. 

Interestingly, most tissues had similar levels of C24:0-dhCer but C24:0-Cer level differed 

significantly between tissues, indicating that ceramide levels are a product of de novo synthesis 

but the salvage pathway and breakdown of complex sphingolipids may contribute substantially 

to the ceramide profile. These studies provide excellent data but are only a brief snapshot of 

metabolism as ceramides are substrates for synthesis of complex sphingolipids which have their 

own distinct functions and mechanisms of action. The authors concluded that each tissue in the 

mouse model seems to have its own specific ceramide equilibrium between the multiple 

ceramide species and that destabilization of this equilibrium is associated with various 
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pathological conditions [82]. Indeed, the ceramide steady state status of  a cell or tissue is 

determined by the activity of enzymes that produce ceramides with different acyl chain lengths 

but also by those that utilize ceramides as substrates such as glucosylceramide synthase 

(GlucCerS) and SMase [82].  

Dimerization is an important regulatory mechanism of CerS proteins 

Ceramide metabolism is also regulated via oligomerization of CerS proteins [133]. 

Laviad et al. provide compelling data for the role of dimer formation in regulating CerS activity 

[133].While post-translational modifications provide a rapid avenue to change CerS activity 

upon exposure to stimuli or stressful conditions, it is possible that CerS2, CerS5, and CerS6 may 

exist as heterocomplexes in some cell lines [124]. This mode of regulation exists in addition to 

the protein phosphorylation and glycosylation which also alter the activity of CerS [82, 99, 133]. 

It has been proposed that the activity of one member of the heterodimer depends upon and can be 

modulated by the activity of the other. A dimer consisting of a CerS5 monomer attached via 

transmembrane domain to a CerS2 monomer resulted in 3-fold higher activity of CerS2 using 

C22-CoA as a substrate [133]. This led the authors to conclude that optimal CerS2 activity 

depends on an interaction with a catalytically active form of CerS5 [133]. Interestingly, it was 

found that two monomers of CerS5 directly attached to each other via the N-terminus of one 

monomer to the C-terminus of the second monomer displayed no catalytic activity [133]. 

However, the insertion of a transmembrane domain between those two monomers resulted in a 

catalytically active dimer which had approximately 6-fold higher activity than the CerS5 

monomer [133]. This indicated that the N and C termini of CerS are located on opposite sides of 

the ER and that CerS may exist in an equilibrium between monomers and dimers in different 

locations. Formation and dissociation of these dimers could be an extremely important 

mechanism of regulating activity [133].  
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Dimerization as a method of regulation also provides explanation of the fact that the acyl 

chain composition of ceramides does not reflect the CerS expression pattern in some tissues 

[133].  The ceramide composition likely depends on the expression of different CerS but also 

their ability to interact with each other. For example, investigation of different cell lines has 

found that co-transfection of CerS2 with CerS4 or CerS6 enhanced the activity of CerS2 [96]. 

Interestingly, CerS2 has the lowest in vivo activity[134], but the widest tissue distribution [82, 

112, 133]. It was further suggested that CerS splice variants, which do not possess activity 

themselves [107], may act in a dominant-negative manner to regulate CerS activity [133]. More 

work is needed to better understand the molecular and structural details of how exactly CerS 

proteins interact, the mechanisms or signals that drive formation of homodimers or heterodimers, 

and the implications of such interactions. Dimerization is a rapid mechanism to increase 

ceramide levels under various physiological conditions or in response to cellular stress which 

relies on ceramides as signaling molecules [133].  

Studies investigating the effects of knocking down or silencing CerS enzymes separately 

or together have provided valuable insight into the interconnectedness and regulation of these 

enzymes [135]. Knocking down individual CerS enzymes via small-interfering ribonucleic acid 

(siRNA) in MCF-7 breast adenocarcinoma cells resulted in a wide range of effects on 

nontargeted CerS expression. This change caused both increases and decreases in select 

sphingolipid species resulting in little change in total ceramide levels. Knockdown of CerS2 

resulted in increased mRNA levels of CerS4, CerS5, and CerS6. Treatment with siCerS6 

elevated levels of CerS5 mRNA by approximately 2-fold and siRNA for both CerS2 and CerS4 

caused upregulation of CerS6 mRNA. At the protein level, knocking down CerS3, CerS4 or 

CerS5 caused an elevation in CerS2 protein and knocking down CerS2 or CerS4 also caused an 
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elevation of CerS6 protein. Interestingly, the authors found that knocking down CerS enzymes 

individually did not produce a significant increase in sphingoid base levels and that cells were 

able to maintain overall SM levels despite changes in acyl chain composition. The ability of cells 

to resist changes in ceramides due to knocking down CerS enzymes may be explained by 

nontargeted CerS compensation [135]. In addition to knocking down individual CerS proteins, 

the investigators also treated cells with siCerS2/5/6 to silence all three genes. There were no 

overall changes in Cer or SM levels but there was a shift in chain length distribution, particularly 

among medium and long-chain species. Total dhCer and hexosyl-ceramide (HexCer) levels 

increased as did Sph and S1P levels suggesting that knocking down three isoforms of CerS was 

sufficient to cause an accumulation of sphingoid bases. The changes in sphingolipids that were 

observed suggests the presence of a counter-regulatory mechanism whereby Cer and SM levels 

are maintained at the expense of accumulation of dhCer and HexCer species.  

Ceramides in cellular signaling  

Ceramides, the precursors for most complex sphingolipids [136], regulate and activate a 

variety of cellular pathways including autophagy, senescence, apoptosis, proliferation, p53 

signaling, and inflammation [137-143], and are produced in response to many extracellular and 

intracellular stimuli including ultraviolet radiation, ionizing radiation, endotoxins, cytokines, 

serum deprivation, retinoic acid, folate withdrawal and chemotherapeutic agents [12, 92, 144-

149].  Moreover, different stress stimuli evoke a response to produce specific acyl chain length 

ceramides during different physiological and pathological conditions which will differentially 

affect signaling pathways [150, 151]. In human colon and breast cancer cells, accumulation of 

long-chain ceramides induces apoptosis and inhibits cell cycle progression leading to inhibition 

of cell proliferation and ultimately cell death [152]. Abnormal ceramide signaling has also been 

found in lung diseases including acute lung injury, cystic fibrosis and chronic obstructive 
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pulmonary disease [84]. Ceramides have also been found to play a role in Toll-like receptor 4 

protein (TLR4)-induced IR [153] as well as TNFα-induced IR, disturbed insulin secretion and 

pancreatic β-cell apoptosis [154]. Hamada et al. found that de novo synthesis of ceramides 

significantly contributes to the palmitate-stimulation of Interleukin (IL)-6 and MCP1 secretion 

from adipocytes and is involved in the interaction between adipocytes and macrophages and the 

mediation of pro-inflammatory adipokines [154].  

The balance between sphingolipid species has also been shown to determine cellular 

response to various stimuli. Elevated C16-Cer levels in tandem with loss of C24-Cer has been 

implicated in triggering oxidative stress, apoptosis, alterations of inflammatory cell trafficking 

and alteration of host-environment interactions in lung tissue [84]. An important discovery in this 

area was that the balance between C16 and C24-Cer is important for the induction of apoptosis 

[150]. CerS2, which produces C24-Cer, is now thought to function as a house keeping gene 

whereas other CerS enzymes can be activated under stress situations to increase ceramide 

synthesis [107, 112, 117, 133]. The actions of ceramides in signaling is also likely countered by 

S1P. Ceramide and S1P have been found to play opposing roles in cell proliferation, migration, 

and survival indicating the importance of balancing these two specific sphingolipid species and 

an imbalance between these metabolites is likely to have significant pathological and 

physiopathological consequences [155-157].  

CerS6 and C16-ceramide metabolism 

Ceramide Synthase 6, the protein of interest in this dissertation, is expressed at low levels 

in most tissues [82, 112], synthesizes C14- and C16-Cer, and has been studied extensively for its 

role in modulating ER stress and apoptosis[11, 124, 125, 158-162]. C16-CoA which is used in 

production of C16-ceramide, is one of the most abundant acyl-CoAs, used at two different steps 

in ceramide de novo synthesis, and also serves as a precursor for other lipids [82]. Currently, the 
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long-chain ceramides, especially C16-Cer, are considered to be generally pro-apoptotic while 

very-long-chain ceramides, primarily C24-Cer, are anti-apoptotic [124, 163]. The coordinated 

function of CerS2, 5, and 6 may result from association of these enzyme in a complex and the 

combined activity of the three isoforms determines the outcome for the cells based on the 

balance between pro- and anti-apoptotic species [124]. It is also likely that a change in single 

specific ceramide is not the only factor determining cellular outcome, but rather the ratio of 

several ceramide species. Specifically, the ratio of C16-Cer to C24-Cer is thought to be 

responsible for induction of apoptosis and tumor development [164].  

In animal models, alterations of CerS6 activity affected sphingolipid pools. Specifically 

in brain tissue, inactivation of CerS6 led to a 70% reduction in incorporation of palmitoyl-CoA 

into C16-Cer in the forebrain and cerebellum [122]. The kidneys were also affected by CerS6 

inactivation as were the intestines, but to a lesser extent [122]. Nearly all tissues investigated 

showed a decrease in C16-containing sphingolipids upon CerS6 inactivation. Interestingly, 

heterozygous mice also had reduced activity of CerS6 in incorporating palmitoyl-CoA, 

indicating that one allele is insufficient to maintain normal sphingolipid metabolism.  CerS6 KO 

mice also exhibited behavioral abnormalities including impaired behavioral habituation toward a 

new environment which was attributed to an impaired ability to encode and maintain spatial 

information [122].  

Altered CerS6 expression has been detected in several human diseases. CerS6 is involved 

in human alcoholic steatosis [165] and likely plays a role in psychosocial stress [166]. 

Additionally, both CerS2 and CerS6 mRNA were significantly elevated in breast cancer tissue 

with [167] approximately half of the affected individuals demonstrating elevated CerS2 and 

CerS6 mRNA levels [167]. Elevated C16-Cer levels have also been found in breast cancer tissue 
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[168]. Because CerS mRNA levels do not necessarily reflect CerS protein expression or enzyme 

activity, and there are multiple modes of CerS activity regulation [107], caution should be used 

in the interpretation of expression data or their evaluation as prognostic or diagnostic biomarkers.  

Ceramides in obesity and insulin resistance 

There is strong evidence supporting a relationship between ceramide metabolism and 

obesity and IR. In human studies investigating CerS, only CerS6 expression was positively 

correlated with BMI, body fat content, and hyperglycemia [169] and ceramide levels are often 

elevated in skeletal muscle and plasma among other tissues in obese humans [109, 170, 171]. 

Animal models have indicated that there are significant changes in the sphingolipid profiles of 

mice fed a HFD [136, 169, 172-174].  

There are few animal studies further investigating the relationship between ceramide 

metabolism and development of obesity and/or diabetes. Gosejacob et al. [173] fed CerS5 KO 

and WT mice a high fat diet until 24 weeks of age to analyze changes in energy homeostasis. 

They found a reduction of C16-Cer but there were no alterations in ceramide species of different 

acyl chain lengths. Additionally, C16- and C18-Cer were reduced in the CerS5 KO mice fed a 

HFD. At a phenotypic level, CerS5 KO mice gained less weight on a HFD compared to WT 

mice, had lower levels of circulating leptin and lower accumulation of triacylglycerols, non-

esterified fatty acids, and were protected from becoming severely glucose intolerant after HFD 

feeding, in contrast to their WT controls. Mice performed similarly during a glucose-tolerance 

test when on a low-fat diet but after HFD feeding only the KO mice retained their insulin 

sensitivity, indicating an interaction between ceramide metabolism and the development of 

diabetes. Additionally, CerS1 KO mice fed a high fat diet were protected from weight gain, fat 

mass accumulation, glucose intolerance and several other markers of metabolic syndrome. They 

also exhibited significantly lower ceramide levels, specifically C18-Cer. [109]. These effects were 
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also seen in a skeletal muscle knockout model of CerS1. Interestingly, no protection was found 

when CerS5 and CerS6 were knocked down in skeletal muscle, thus indicating that CerS1 is 

important to skeletal muscle ceramide regulation [109].  

The specific role of CerS6 in high fat diet feeding 

In a whole-body and tissue-specific knockout models of CerS6, investigators found 

reduced C16-Cer levels in white adipose tissue (WAT), brown adipose tissue (BAT) and liver 

after mice were challenged with a high fat diet [169]. CerS6 KO mice were also protected from 

diet-induced obesity (DIO), exhibiting reduced body weight, decreased body fat content, reduced 

adipocyte size, and lower serum leptin concentrations compared to their littermate controls. The 

authors suggested that this could be due to increased energy expenditure, although this was not 

further investigated. Mechanistically, the authors suggested that because the brown adipocytes 

from CerS6 KO mice showed unaltered utilization of glycolytic substrates but had increased 

mitochondrial beta-oxidative capacity, CerS6 may play a role in regulating BAT mitochondrial 

beta-oxidative capacity, thereby increasing energy expenditure and improving systemic glucose 

homeostasis. Deletion of CerS6 also protected the mice from macrophage infiltration and 

activation of pro-inflammatory WAT gene expression. Insulin action in the liver was improved, 

pointing to a system-wide role for CerS6 in protection from diet induced obesity [169].  

Lipotoxic actions of ceramides 

Based on the strength of the data presented in rodent and human studies investigating 

ceramide metabolism and high fat feeding, ceramide is considered to be an important nutrient 

metabolite that accumulates in obesity and results in alterations of cellular metabolism, 

contributing to hallmarks of metabolic disease [175]. Several studies have found that increasing 

ceramide levels inhibits insulin signaling and causes IR [109, 136, 169, 173, 175-177]. 

Ceramides and their derivatives have been found to antagonize insulin signaling, induce 
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oxidative stress, and inhibit glucose uptake and storage, which may initiate many of the 

molecular defects that contribute to IR [136]. Specifically, palmitate, which is used to form C16-

Cer, has been found to have detrimental effects on β-cell function including impairment of 

glucose-induced insulin release [178, 179], suppression of insulin gene expression [180-182] and 

induction of β-cell apoptosis [183-186]. Additionally, a cell-permeant analogue of ceramide has 

been found to impair insulin production in β-cells [187] and pharmacological inhibitors of 

ceramide synthesis have been found to prevent some of the detrimental effects of palmitate 

[181].  

Several possible mechanisms have been suggested to explain the lipotoxic effects of 

ceramides. First, oversupply of saturated fatty acids from the diet induces ceramide accumulation 

[175, 188] which leads to activation of several downstream pathways. Specifically, ceramide 

metabolism appears to be closely linked to adipokine and cytokine signaling, further providing a 

link between ceramides and type 2 diabetes. Patient studies have found a strong correlation 

between plasma Cer, circulating cytokines and IR [169, 171, 189, 190]. It has also been found 

that ceramide metabolism plays a prominent role in leptin, TNFα, adiponectin and resistin 

activation and signaling [191-198]. Several studies have suggested that ceramide blocks the 

activation of protein kinase B (Akt/PKB) pathways thus impairing the translocation of glucose 

transporter type 4 (GLUT4) to the plasma membrane [199-203]. Ceramide accumulation 

decreases the activity of Akt/PKB both directly, via dephosphorylation of protein phosphatase 2, 

and indirectly by blocking translocation of Akt via protein kinase C zeta (PKCζ) [204], all of 

which affect cellular glucose uptake. In obesity, CerS6-derived C16:0-Cer was found to be 

responsible for the inhibition of mitochondrial beta-oxidation in the liver and brown adipose 

tissue [205]. However, it is not clear how physiologically relevant these mechanisms are or how 
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the pathways work together in an animal model. Other studies, while lacking mechanistic 

understanding, have found that adipocytes are highly sensitive to glycosylated sphingolipids and 

that the antagonistic effects of TNFα can be negated by depleting cells of glycosylated ceramides 

[175]. These could be important pathways linking ceramide metabolism to the development and 

progression of metabolic diseases. Koves et al. [206] outlined a potential mechanism linking 

ceramides to diabetes whereby impairment of mitochondrial lipid oxidation leads to the build-up 

of toxic lipids including ceramide, causing a compensatory impairment of glucose utilization. A 

role for ER stress, in addition to mitochondrial stress, has also been proposed for its connection 

to ceramide metabolism [11, 159, 177]. However, the exact role of ceramide is not always clear. 

For example, one study in β-cell lines implicated ceramide as both a cause and effect of ER 

stress [207].  

Due to the plethora of evidence supporting a relationship between sphingolipids and 

metabolic disturbances at both the cellular- and whole-body level, studies are underway to 

investigate therapeutic targets to reduce C16-Cer levels. Raichur et al. [4] treated ob/ob (leptin-

deficient) mice and HFD-fed mice with a CerS6 antisense oligonucleotide (ASO) to investigate 

the efficacy of targeting CerS6 without genetically modifying the mice. They found increased 

levels of C16:0-Cer in ob/ob and HFD fed mice which were decreased upon treatment with ASO. 

Treatment also restored expression levels of CerS6 to that of controls whereas CerS6 expression 

remained elevated in obese mice. Treatment with CerS6 ASO restored glucose sensitivity and 

plasma adiponectin levels. A common conclusion in the studies investigating ceramides in 

obesity and IR is that the lipotoxic role is due to C16-ceramide specifically. A mouse model of 

heterozygous CerS2 KO found similar impairment of glucose tolerance, altered plasma 

cholesterol, liver damage, and other markers common to obesity. These effects were explained 
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by the fact that knocking down CerS2 led to a concomitant increase in C16-Cer due to decreased 

C24-Cer [130]. This provides strong data that are complementary to the studies investigating 

CerS5 or CerS6 knockout mice.  

Ceramides and nutrient stress 

Sphingolipids have also been studied for their role in determining response to nutrient 

stressors including folate depletion, synthetic retinoids, vitamin E metabolites, and choline and 

magnesium withdrawal [7-10, 12, 208]. Short-term dietary deficiency of magnesium in mammals 

results in the activation of p53 in diverse cardiovascular tissues and cells along with an increase 

in de novo ceramide synthesis by activating SM synthase, SPT and CerS [7, 8]. Ceramides have 

also been implicated in the response to fenretinide, a synthetic retinoid that inhibits obesity and 

development of IR in HFD-fed mice [9]. 3T3-L1 adipocytes that were treated with fenretinide 

had significantly elevated concentrations of several dhCer species as well as dhCer-containing 

SM species. Although this was an in vitro study investigating a synthetic retinoid, the results still 

suggest a possible connection between sphingolipids and vitamin A. Additionally, γ-tocotrienol, 

a member of the vitamin E family, caused an increase of C16-, C24:0-, and C24:1-Cer and dhCer 

species as well as increased expression of SPT and CerS6 genes in pancreatic cancer cells. While 

these results should be evaluated in other cell types and rodent models, there was a clear effect of 

this vitamin E metabolite in pancreatic cancer cells furthering the evidence that ceramides are 

involved in the response to nutrient stress, both withdrawal and high-dose treatments.  

Ceramides respond to folate withdrawal 

Previous work from our laboratory has investigated the role of folate stress in several 

cancer cell lines through the manipulation of aldehyde hydrogenase 1 family member L1 

(ALDH1L1), an enzyme involved in the regulation of folate metabolism [12]. Over-expression 

of ALDH1L1 induces folate stress and has been found to increase apoptosis and other metabolic 
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alterations, specifically, increasing ceramides. C16, C24, C24:1-Cer and C16-dhCer were the species 

increased under ALDH1L1 induction and were also the only species significantly elevated upon 

withdrawal of folate from the media indicating a similar folate-stress response. CerS4 and CerS6 

mRNA were transiently upregulated in cells transfected with ALDH1L1 and there was a 

persistent increase in CerS6 protein expression.  When de novo ceramide generation was 

inhibited via myriocin, an inhibitor of SPT, or fumonisin B1, a CerS inhibitor, total ceramide 

elevation was prevented and the ALDH1L1-expressing cells were protected from apoptosis [12]. 

This indicates that ALDH1L1-induced apoptosis requires de novo ceramide generation. 

Additionally, knocking down CerS6 rescued cells from ALDH1L1-induced apoptosis and 

increased the viable cell number at 48 hours post-ALDH1L1 induction [12]. These experiments 

provide compelling data for the role of CerS6 and C16-Cer in mediating the cellular response to 

ALDH1L1, which is further enhanced by the finding that knockdown of CerS2 (the only source 

of other ceramide species that were increased in these cells) via siRNA did not rescue cells from 

ALDH1L1-induced apoptosis and therefore it is unlikely to play a significant role in ALDH1L1 

stress response. While informative, cell culture studies are difficult to translate to humans. We 

therefore sought to investigate the relationship between folate and ceramide metabolism in an 

animal model.  

Rationale 

There is now clear evidence that ceramides orchestrate the response to cellular stress, and 

additionally, a growing body of evidence implicates ceramides in the response to nutritional 

stress such as HFD and alterations in micronutrient levels. We seek to better understand how 

ceramides respond to dietary changes of both macro- and micronutrients (fat and folic acid) in an 

animal model in order to develop approaches that could mitigate effects of this stress. Our 

laboratory has demonstrated in vitro that folate depletion evokes a cellular response mediated by 
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ceramides. Here we seek to test the hypothesis that alterations of dietary folic acid will induce a 

CerS6-dependent sphingolipid response in mice and knocking out the enzyme will mitigate this 

response. We will investigate both effects of folic acid deficiency and over-supplementation as 

both ends of the spectrum have adverse consequences in humans. Furthermore, we will challenge 

the mice with a high fat diet which is deficient in or over-supplemented with FA to assess 

combinatorial effects of high fat and FA in modulating sphingolipid metabolism and the 

resulting phenotypic changes in mice. The standard Western diet is high in fat and the 

fortification of refined foods provides most of the population with more than sufficient folic acid. 

However, intake of both fat and folic acid still varies widely. We propose to investigate two 

different levels of fat and three levels of FA to gain a better understanding of the consequences 

across a range of intakes.  

It should be noted that currently there are no studies investigating the interaction of folate 

and ceramide metabolism in the context of high fat intake. There is sufficient data indicating that 

folate affects lipid metabolism, but no information on sphingolipids. Therefore, our results will 

bridge a knowledge gap regarding the function of ceramide under different levels of dietary 

folate in conjunction with a standard lower-fat diet or HFD. We expect that our data will inform 

the future approaches to counteract ceramide elevation and metabolic stress responses by 

adjusting folic acid supplementation.   

These studies will also provide more data to delineate the distinct roles of CerS5 and 

CerS6. As mentioned previously, both have been studied in response to HFD feeding. 

Interestingly, CerS5 and CerS6 seem to have different biological functions  [209, 210] and 

possibly even differential expression in particular cell types [122], despite similar tissue 

expression pattern and substrate specificity. We will specifically focus on CerS6 based on our 
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findings from cell culture experiments. However, this data could be extremely useful in guiding 

future studies and assessing the differential responses of CerS5 and CerS6 to nutrient stress. 

Public Health Relevance 

Plasma ceramides may be important markers of health 

Plasma ceramides have been suggested as potential biomarkers or predictive measures for 

several disease states. A study investigating two large cohorts in Singapore and New Zealand 

found 11 distinct plasma Cer and 1 plasma dhCer that were predictive of major adverse 

cardiovascular events in patients with previous myocardial infarction [211]. Discovery of a 

dihydroceramide, specifically C16-dhCer in this group adds to growing literature suggesting that 

dihydroceramides are not simply transient species in ceramide biosynthesis but rather may serve 

important signaling roles [212]. Similarly, patients with stage 4 colorectal cancer were found to 

have altered levels of Cer and SM, but not HexCer species [3]. Specifically, the levels of C16-, 

C18-, C18:1- and C24:1-Cer as well as Sph were significantly higher in patients than control subjects 

whereas the levels of C24-SM were significantly lower than those of controls.  

As new technology has been developed that allows precise quantitation of individual 

sphingolipid species, the role of plasma ceramides can now be more appreciated. Several 

laboratories have been working to create plasma ceramide scores, based on measurements of 

individual ceramides in plasma, as a predictive tool for future events or disease risk. Most of 

these studies investigate aspects of cardiovascular disease, due to its strong link to ceramide. 

Atherosclerotic plaques have been found to be enriched with certain ceramides by as much as 

50-fold [213] and pro-inflammatory cytokines including interferon-gamma (IFNγ), TNFα, and 

IL-1β stimulate ceramide synthesis [214]. Several groups have developed a ceramide risk score 

for cardiovascular events by combining the values of C16-Cer, C18-Cer, C24:0-Cer and C24:1-Cer 

into a single score [215-219]. Meeusen et al. found that C16-, C18-, and C24:1-Cer were predictive 
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for a combined outcome of myocardial infarction, stroke, revascularization and death from any 

cause at 4 years follow up [2]. Moreover, these ceramide scores remained significantly predictive 

even after adjusting for common risk factors including BMI, age, sex and smoking history. 

Interestingly, Kaplan-Meir survival analysis demonstrated that the risk of a major adverse event 

at any time during 18 years of follow up was significantly greater in individuals with an 

increased ceramide risk score [2]. Additionally, C16- and C24:1-Cer were significantly predictive 

for all-cause mortality at 18 years [2], a discovery that warrants more in-depth studies to examine 

the mechanism and strength of association. The authors appropriately noted that useful 

biomarkers are those that respond to change and that give the patient ability to monitor them over 

time in response to lifestyle changes. It has been found that gastric bypass surgery [220], aerobic 

exercise [221] and statin use [217, 222] can modulate ceramides levels but more work is 

necessary to understand how sensitive and responsive plasma ceramides are to dietary changes.  

Genetic variation in sphingolipid metabolism 

While more studies are needed to investigate the response of sphingolipids to dietary 

intake, an additional aspect deserves special attention: the individual genetic variability 

underlying sphingolipid metabolism and regulation. A study identifying genetic mutations in 

several genes involved in ceramide synthesis and degradation found that up to 12.7% of the 

variation in sphingolipid species can be explained by a single genetic mutation [223]. A 

functional single nucleotide polymorphism (SNP) in  ATPase Phospholipid Transporting 10D 

(Putative) (ATP10D) was significantly associated with GlucCer levels, providing evidence for 

the involvement of APT10D in intracellular transport of specific ceramides [223]. It was 

postulated that impaired function of ATP10D may impair transport of ceramides, leading to 

enhanced exposure to glucosyltransferases. This would allow higher concentrations of 

glucosylceramides to form and be released into the plasma compartment. Alternatively, 
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impairment of APT10D may impair transport of glucosylceramide to the trans-Golgi network. 

Interestingly, none of the genes involved in ceramide degradation or ceramide-related signaling 

were significantly associated with the analyzed traits leading the authors to conclude that genetic 

control of ceramide levels is primarily due to ceramide production as opposed to degradation 

[223].  In a mouse model of APT10D mutations, the animals demonstrated lower high-density 

lipoprotein concentrations and developed severe obesity, hyperglycemia and hyperinsulinemia 

when fed HFD [224]. Furthermore, 4 SNPs significantly associated with type 2 diabetes, fasting 

plasma, glucose and waist circumference were identified in the CerS6 gene in an indigenous 

Australian population [225]. As studies reveal more information about the genetic control 

underlying variation in sphingolipid concentrations and response, more work needs to be done to 

address mechanisms of diet effects on sphingolipid metabolism given their profound connection 

to several disease states. 
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CHAPTER 3: CERAMIDE SYNTHASE 6 MEDIATES SEX-SPECIFIC METABOLIC 

RESPONSE TO DIETARY FOLIC ACID SUPPLEMENTATION 

Introduction 

Sphingolipids, the second largest class of lipids in biological membranes, share a 

common structural element (the sphingoid base), comprise 10-20% of membrane lipids [226] 

and define the unique biophysical properties of these membranes [227, 228]. Sphingolipids are, 

also, involved in the regulation of fundamental cellular processes such as proliferation, 

differentiation, migration, survival and senescence, as well as response to stress [159, 226, 229]. 

Therefore it is not surprising that sphingolipids have been implicated in the development and 

progression of diseases including cancer, type 2 diabetes, cardiovascular and Alzheimer’s 

diseases [83, 230-234]. Ceramides, sphingosine and sphingosine-1-phosphate are often 

investigated as regulatory or signaling lipids [235], however recently such roles have also been 

proposed for complex sphingolipids [226].  

Often viewed as central players in sphingolipid metabolism, ceramides can be synthetized 

de novo, starting from the condensation of serine and palmitoyl-CoA followed by reduction to 

dihydrosphingosine, N-acylation to dihydroceramide by ceramide synthases, with final 

conversion to ceramide by dihydroceramide desaturase [233]. Ceramides can be also formed via 

degradation of pre-formed complex sphingolipids in the endolysosomal pathway by acid SMase 

and glycosidases (GCase) and by CerS utilizing free sphingosine generated via the salvage 

pathway [233]. Six isoforms of the ceramide synthase family (CerS1-6) have been identified [77, 

236], which carry out the same chemical reaction but differ in their affinity for the specific acyl-
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CoA used, allowing for unique regulation of the balance of different ceramides in cells and 

tissues. The function and distribution of these six isoforms has been reviewed extensively [77, 

233, 236, 237]. An increasing number of studies have demonstrated that cellular effects of 

ceramides and sphingolipids depend on their specific structural characteristics, including acyl 

chain length [1, 237]. This makes CerS an attractive target both in biomedical research and in 

development of novel therapeutic approaches for treatment of diseases [237-239].  

CerS6, similar to another family member CerS5, preferentially produces C14- and C16-

ceramides. It is expressed in many tissues, but generally at low levels, and can be upregulated by 

various types of stress resulting in increased production of C16-ceramide and an anti-

proliferative/apoptotic response [111, 240-242]. CerS6 is expressed in the liver tissue which is 

also the primary site of folate metabolism [43, 243]. Folate is a B-vitamin that is involved in the 

synthesis of nucleotides, metabolism of amino acids and methylation reactions [14, 17, 244].  

Inadequate intake of folate in humans contributes to folate deficiency which has widespread 

effects due to the role of folate in many cellular processes [245-247]. Folate cannot be 

synthesized by cells of higher animals but must be obtained from diet [244, 248]. However 

excess folate in the diet or dietary supplements in the form of FA can have negative effects [37, 

43]. Recent studies from our lab have demonstrated that metabolic stress induced by disruption 

of folate metabolism via folate withdrawal, impairment of folate enzymes, or by antifolate drugs, 

results in upregulation of CerS6 and elevation of C16-Cer in cultured cells [12, 249]. Because the 

liver is the primary site of folate metabolism and also expresses CerS6, among other CerS, we 

focused specifically on changes in the sphingolipid profile and metabolome of liver tissue.  

In this regard, it is worth noting that the link between folate metabolism and ceramide 

signaling is still not clear. Here, we examined the effects of dietary folate alteration on the liver 
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metabolome and sphingolipids in WT and CerS6 KO mice to determine broad effects of folate 

deficiency and over-supplementation on liver metabolism and evaluate the role of CerS6 and 

ceramide in maintaining tissue homeostasis. We hypothesized that there would be significant 

increases in many ceramide species in order to compensate for the lack of CerS6 and its products 

C14- and C16-Cer and keep total ceramide concentrations constant. We did not expect to see 

changes in sphingomyelin concentrations as they are mostly considered to play structural roles. 

Additionally, we hypothesized that alterations of ceramide pools would cause changes in other 

lipid pools in the liver. 

Materials and Methods 

Animals and husbandry 

All animal experiments were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the North Carolina Research Campus (NCRC). CerS6 KO mice were 

generated in Dr. Ogretmen’s lab and we bred them back 5-6 generations to the C57BL/6NHsd 

mice purchased from Envigo (Indianapolis, IN). Confirmation of protein knockout via Western 

Blot is shown in Figure S3.1. Animals for dietary experiments were generated by breeding 

heterozygous (CerS6+/-) males and females. Wild type (CerS6+/+) and knockout (CerS6-/-) 

littermates were randomized to dietary groups. Both male and female mice were used in these 

experiments. Mice were group housed in microisolator cages under standard conditions (12h 

light/dark cycle, temperature- and humidity-control) with ad lib access to water and one of the 

three purified synthetic diets containing 14.4% kcal from fat, 66.5% kcal from carbohydrate, and 

19.1% kcal from protein, and differing only in the amount of folic acid. All diets were purchased 

from Envigo: 1) folic acid deficient diet (FD, catalog number TD.95247) with no added FA and 

containing only residual 0.01ppm FA coming with added protein; 2) control diet (Ctrl) with 

2ppm FA added (TD.160824) and 3) folic acid over-supplemented diet (FS) containing 12ppm 
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FA (TD.160825). The amino acid sources (casein and L-cystine) were consistent across diets, as 

were sources of carbohydrate (corn starch, sucrose, maltodextrin) and fat (soybean oil). All 

animals were placed on respective diets at 10 weeks of age, maintained on the diets for 4 weeks, 

and euthanized at 14 weeks of age. Earlier studies have shown that folate-deficient diet 

significantly reduces both blood and tissue folate concentrations over a period of 2 weeks [250, 

251].  Blood and tissues were collected, sections of liver, brain and testes were fixed in formalin 

and the remaining tissues were snap-frozen in liquid nitrogen for further analysis. Body 

composition (lean and fat mass) was assessed before mice were placed on diet and before 

necropsy using the EchoMRI-130 Body Composition Analyzer. Mice were fasted 4 hours before 

blood draw via retro-orbital bleed. 

Western blot assays 

Fragments of frozen liver (~30 mg) were homogenized using Dounce homogenizer in 

750 l of RIPA buffer containing phosphatase and protease inhibitor cocktail (1:100, Sigma-

Aldrich, St. Louis, MO), sonicated and centrifuged (20,000 x g, 5 min, 4°C). The supernatant 

was stored at -80°C. Aliquots of 20 µg of total protein were subjected to SDS-PAGE followed by 

immunoblot with corresponding antibodies. All antibodies were diluted in 3% BSA blocking 

buffer. Membranes were washed 4 times with 2% TWEEN-20 in TBS. Blots were developed 

with SuperSignal West Pico Chemiluminescent substrate and analyzed using the Odyssey Fc 

infrared scanner from LI-COR. 

LC-MS/MS analysis of sphingolipids 

Aliquots of frozen tissues were homogenized in PBS using Dounce homogenizer. 

Homogenate volumes containing 1 mg of total protein were immediately frozen and stored at -

80 C. Sphingolipid concentrations were measured by High-performance liquid chromatography- 
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tandem mass spectrometry (HPLC-MS/MS) methodology as previously described by the MUSC 

Lipidomics Shared Resource [252]. Data are presented as mean + SEM as pmol/mg total protein. 

Additionally, measurements of hexosyl-ceramides include glucosyl- and galactosyl-ceramides 

but not lactosyl-ceramide species. 

Plasma markers  

Blood was collected into EDTA-containing tubes and plasma was separated via 

centrifugation at 6,000 x g for 10 minutes at 4°C. Plasma triacylglycerol, cholesterol and glucose 

were measured using Thermo Fisher Scientific Infinity colorimetric assays with appropriate 

standards (Stanbio glucose standard (100mg/dl), Pointe Scientific TG standard (200mg/dl), and 

Pointe Scientific Cholesterol standard (200mg/dl)). All samples were run in triplicate with n=5 

per group. Plates were read using the BioTek Synergy HT plate reader and validated with 

internal controls of pooled plasma.  

Histology 

Liver, brain, and testes fixed in 10% formalin were embedded in paraffin blocks and 5 

m sections from the blocks were placed on slides, deparaffinized, re-hydrated and stained with 

hematoxylin and eosin according to standard protocol. Images were taken on Keyence BZ-X710 

All-in-one fluorescence microscope at 2X, 10X, and 20X magnification.  

Metabolomic analysis 

Untargeted metabolomic analysis was performed by the commercial service provider 

Metabolon® (Durham, NC). Snap-frozen liver, brain and testes tissue samples were subjected to 

extraction with methanol and divided into aliquots for further analysis by ultrahigh performance 

liquid chromatography/mass spectrometry (UHPLC/MS). The global biochemical profiling 

consisted of four unique arms covering identification of both hydrophilic and hydrophobic 

compounds under both positive and negative ionization conditions [253]. Metabolites were 
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identified by automated comparison of the ion features in the samples to a reference library of 

chemical standards characteristics which included retention time, m/z (mass/charge) ratio, 

predominant adducts and in-source fragmentation and associated spectra.  

Statistical analysis 

For statistical analysis of differences between two groups Student’s t-test was performed 

using GraphPad software. For the statistical analysis of differences between three or more 

groups, one-way ANOVA was used with Sidak’s multiple comparisons test to determine 

differences between specific groups. Results were determined to be statistically significantly 

different at p<0.05. Data are presented as mean + standard error of measurement (SEM). 

Metabolomic data were analyzed using Qlucore Omics Explorer v.3.4 software (Qlucore, Lund, 

Sweden).  

Results 

CerS6 knockout prevents fat mass accumulation in male mice, independent of FA 

supplementation 

We evaluated body mass and body composition in WT and CerS6 KO mice before and 

after dietary treatment of folate-deficient (FD), control folate (Ctrl) or folate-supplemented (FS) 

diet. Despite the random assignment of littermates to dietary treatment groups, the average 

weight of males in the KO-Ctrl group was slightly higher than in the KO-FS group, and this 

difference remained after the dietary treatment, resulting in the absence of significant differences 

in the change of body weight between the groups (Fig 3.1).    
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Figure 3.1 Protection of CerS6 KO male but not female mice from weight gain and fat mass 

accumulation.  Body mass and composition were measured before and after dietary intervention. 

Change in body mass was calculated by subtracting pre-diet animal body mass from the post-diet mass. 

Fat mass was measured by Body Composition Analyzer. Data represent mean + SEM, n=5. Checkered 

bars - FD diet; solid bars - Control diet; striped bars - FS diet. WT shown in black and KO shown in grey. 

*, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001, determined by One-way ANOVA with Sidak’s 

multiple comparisons test 

 

At the end of dietary treatment all WT male mice gained more weight and showed higher 

percent of fat mass than their KO counterparts on all diets. Additionally, WT-FS males gained 

more weight and had significantly higher fat mass than WT-Ctrl group.  

Compared to male mice, WT females gained less weight and were overall leaner than 

males on all diets, but KO females had overall higher fat mass than KO males independent of 

diet. Additionally, there were no differences between WT and KO females in the gain of body 

mass, or in percent of fat mass (Fig 3.1), indicating that CerS6 knockout does not protect females 

from weight gain and fat mass increase on these diets.   

Measurements of plasma glucose and cholesterol as well as evaluation of liver: body 

weight ratio did not show significant differences between genotypes or dietary treatments for 

both sexes (Fig S3.2). Histological examination of livers from WT and KO animals on different 
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diets did not show obvious differences between genotypes or any dietary treatments (Fig S3.3 

and S3.4). 

Both CerS6 knockout and folate deficiency affect ceramide profiles of liver 

We next assessed sphingolipid concentrations in the liver of WT and CerS6 KO mice to 

evaluate changes due to knocking out CerS6 or from dietary treatment. As expected, C14- and 

C16-Cer were significantly lower (2-3-fold) in livers of CerS6 KO mice, both male and female 

(Fig 3.2). However, only C14-Cer was significantly increased in folate deficient livers of both 

WT and KO mice. Levels of C16-Cer in folate-deficient livers did not differ significantly from 

control livers in both sexes (Fig 3.2).  Of note, both C14- and C16-Cer were higher in WT females 

than in WT males, while in KO mice only C14-Cer was higher in females than males (Fig 3.2).  

 

Figure 3.2 Effect of folate deficient diet on C14-, C16- and total ceramide levels in male and 

female WT and CerS6 KO mice. Data are shown as mean + SEM, n=5. Checkered bars, FD diet; 

solid bars, Control diet. WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; 

****, p<0.0001, determined by One-way ANOVA with Sidak’s multiple comparisons test  

 

Among the other ceramide species, C18:1- and C20:1-Cer were significantly elevated in 

folate deficient male WT livers and showed similar trend but did not reach statistical significance 
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in KO (Fig S3.5). Additionally, very-long ceramides (C24-, C26- and C26:1) were increased in 

male KO livers compared to WT on control diet, but not on folate deficient diet (Fig S3.5). No 

such elevation was observed in females (Fig S3.6). Overall, the Total Cer levels were not 

significantly different between different genotypes and different diets, both in males and females 

(Fig 3.2). 

Dietary folate supplementation significantly affects sphingomyelin levels while CerS6 KO has no 

effect on sphingomyelins  

The folate over-supplemented diet elevated multiple sphingomyelin species in WT and 

KO mice: C20-, C20:1-, C22-, C22:1- and C24:1-SM in both sexes (Fig 3.3), as well as C18:1 in males 

and C24 and C26:1 in females (Fig S3.7). Total SM levels were also significantly elevated in both 

sexes by folate over-supplementation (Fig 3.3).  

 

Figure 3.3 FA over-supplementation increased very-long-chain sphingomyelin levels in WT 

and CerS6 KO mice of both sexes. Data presented as mean + SEM, n=5. Checkered bars, FD diet; 

solid bars, Control diet. WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; 

****, p<0.0001, determined by One-way ANOVA with Sidak’s multiple comparisons test 

 

However, no significant differences in C14- and C16-SM at different dietary folate levels 

were found in either WT or KO males (Fig S3.7). Wild-type females demonstrated significantly 

elevated C14- and C16-SM on FS diet only (Fig S3.7), and similar increase of C18- and C18:1-SM 

was found in males but not in females (Fig S3.7).  
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Hexosyl-ceramides are modulated by dietary folate 

Similar to C14- and C16-Cer and SM, hexosyl-ceramides with C14- and C16-acyl chains 

were significantly higher in female livers than in male (Fig 3.4a). Interestingly, levels of C16-

HexCer in WT females were 2 times higher than in WT males and FD diet elevated this 

difference to 3-fold.  C14-HexCer showed even greater differences between sexes and also 

increased in response to FD. Other HexCer species were not different in males of different 

genotype or on different diets. Interestingly, in females almost all HexCer species demonstrated 

significant increase in response to the FD diet, but only in the knockout and not WT animals (Fig 

3.4b). Total HexCer levels were not different in WT on either diet but were elevated in the KO-

FD group. (Fig 3.4a).  

 
Figure 3.4 Effects of FD diet on C14-, C16- and total hexosyl-ceramides in males and females 

and on very-long-chain hexosyl-ceramides in females. (a) WT Female mice show significantly 

higher levels of C14- and C16-ceramide than males but in KO females this difference is present only for 

C14-ceramide. (b) Female KO mice show elevated very-long-chain hexosyl-ceramides in response to FD 

diet. Data are shown as mean + SEM, n=5. Checkered bars, FD diet; solid bars, Control diet. WT shown 

in black and KO shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001 determined by 

Student’s t-test between genotypes and diets 
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Mouse liver metabotypes show significant differences based on sex, genotype and diet, with diet 

effects being weaker 

Additionally, we submitted liver samples for untargeted metabolomic analysis in order to 

evaluate changes in metabolic pathways due to dietary treatment and genotype. Untargeted 

metabolomic analysis provided measurements of 736 named biochemicals in mouse liver tissues. 

Statistical comparisons of the measured metabolites using principal component analysis and 

hierarchical clustering demonstrated the strongest separation of the metabotypes by sex (Fig 

3.5a) and genotype (Fig 3.5b), with separation by diet being also discernible (Figure 3.5c). To 

that end, 550 metabolites were statistically significantly (p<0.05) different between male and 

female mice regardless of diet and genotype whereas 298 and 273 metabolites differed 

significantly between dietary intervention and genotype, respectively (Fig S3.8a). Heat map 

analysis demonstrates clear separation of metabotypes by sex (Fig 3.5a), by genotype (Fig 3.5b) 

and by diet (Fig 3.5c).   
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Figure 3.5 Principal component analysis and heat map analyses of liver metabolites.  PCA 

of measured metabolites demonstrates segregation of liver samples by (a) sex, (b) genotype and 

(c) diet. HM analysis confirms separation of metabotypes. Analysis was performed using 

Qlucore Omics Explorer v.3.4 software 
 

Random forest analysis, an unbiased supervised classification approach which splits the 

samples into groups based on the biochemicals providing the best separation between groups, 

showed a predictive accuracy of 64% compared to 8.3% due to random chance alone, when all 

12 groups were included in the analysis (Fig S3.8b). The biochemical importance plot (Fig S3.9) 

demonstrates that the metabolites with the highest contribution to the separation of the group’s 

metabotypes are ceramides and sphingomyelins with C16 acyl chain, folate derivatives and 

formiminoglutamate (FIGLU), as well as several phosphatidylethanolamines, which is consistent 

with experimental design.  

FSCTRLFD FD FSCTRL FD FSCTRL FD FSCTRLWT KO WT WTKO KO

a b c

Males FemalesWT KO
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Not only ceramide and ceramide-based lipids, but also free fatty acids, diglycerides and 

phosphatidylethanolamines are altered in CerS6 KO mice 

Similar to our targeted measurements of Cer, SM, and HexCer, untargeted metabolomics 

demonstrated significant decreases in C16-acyl chain containing sphingolipids in the CerS6 KO 

mouse livers (Fig S3.10). Decreases of 30 – 50 % were observed for most of these sphingolipids 

(C16 and C18), while N-palmitoyl-heptadecasphingosine decreased over 90% and glycosyl-N-

palmitoyl-sphingosine dropped more than 75%, in both males and females (Fig S3.10a). Slight 

changes (<30%) in a few longer-chain ceramides were noted (C22 and C24), but most of these did 

not reach significance. At the same time longer chain sphingomyelins (C18, C22, C24) 

demonstrated statistically significant increases of up to 70% with elevation in females seen more 

often (Fig S3.10b).  

Importantly, knockout of CerS6 induced changes in other lipid classes, besides 

sphingolipids. Elevation of phosphatidylethanolamines (C16-C24) was found both in males and 

females, with more abundant changes in males (Fig 3.6a). On the contrary, long-chain and 

polyunsaturated fatty acids, as well as diacylglycerols were significantly reduced, also more 

frequently in males than females (Fig 3.6b and 3.6c).  
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Figure 3.6 CerS6 KO resulted in alterations of multiple lipid classes in livers. Significant 

increase of phosphatidylethanolamines (a), and significant decrease of long-chain and polyunsaturated 

fatty acids (b), as well as diacylglycerols (c), were observed 

 

Alterations of dietary folate result in significant changes of liver folates, with 5-

methyltetrahydrofolate showing unpredicted dynamics in liver only 

As expected, untargeted metabolomics analysis revealed that higher FA in the animals’ 

diets resulted in increased FA levels in both male and female livers (Fig 3.7a). Levels of 7,8-

dihydrofolate (7,8-DHF) reached a plateau at supplementation level of 2 ppm in WT males only, 
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but progressively increased in KO males and both WT and KO females (Fig 3.7b). However, 

response of 5-methyltetrahydrofolate (5-MTHF), the major supplier of methyl groups from folate 

cycle and a storage form of the vitamin, did not show dose-dependent increase. Liver 5-

methyltetrahydrofolate did not show significant change with increase of dietary FA from 0 to 2 

ppm, either in males or females (Fig 3.7c). Even more surprisingly, further increase of FA 

supplementation to 12 ppm reduced the 5-MTHF levels in male and female livers of both 

genotypes. At the same time, 5-MTHF levels in one of the peripheral tissues (testes), were 

progressively increasing with the increase of dietary levels of FA (Fig 3.7c).  

 
 

Figure 3.7 Changes of liver folate pools by different levels of dietary FA. Tissue folic acid (a) 

and 7,8-dihydrofolic acid (b) demonstrated a dose-dependent response.  5-methyltetrahydrofolic acid 

levels (c) were lower in the FS groups in the liver but not in testes. Metabolon ® measurements presented 

as box plots showing minimum and maximum values were plotted using Prism software. Checkered bars, 

FD diet; solid bars, Control diet; striped bars, FS diet. WT shown in black and KO shown in grey. *, 

p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001, determined by One-way ANOVA with Sidak’s 

multiple comparisons test 

 

The folate-deficient diet did not affect 5-MTHF levels compared to control diet. 

However, the levels of 7,8-DHF and FA were lowered by 54% and 69% correspondingly in WT 
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females and by 80% for both folate forms in KO females (data not shown). In male mice, 

reductions of FA and 7,8-DHF on FD were even stronger, by 88 and 86%, correspondingly, in 

both genotypes, confirming the reduction of liver folate pools on FD diet in our experiments.  

Folate-over-supplemented diet resulted in 3.8- and 3.2-fold elevations of FA and 7,8-DHF 

respectively in WT females, and 7.3- and 6.8-fold elevations in KO females (data not shown). As 

in response to FD diet, response to FS diet in males was stronger than in females, and elevation 

in WT livers was 12- and 7.4-fold for FA and 7,8-DHF, respectively, while in KO livers 10.7- 

and 14.2-fold increases were seen (data not shown). Levels of FIGLU, a product of histidine 

catabolism, were elevated in the folate-deficient livers and reduced in folate over-supplemented 

tissues, consistent with the role of tetrahydrofolate as the acceptor of the formimino group from 

FIGLU (data not shown).  

Genotype-sex interactions are apparent from metabolomic data 

Overall, our metabolomic data frequently show different metabolite levels in different 

sexes.  We therefore examined the genotype: sex interaction, i.e. whether the genotype of the 

animals had impact on the metabolite levels assessed in male versus female livers, regardless of 

the diet. All together 143 biochemicals exhibited significant genotype: sex interactions. Among 

these, metabolites displaying highest statistical significance (p0.005) belong to the groups of 

ceramides and ceramide-derived sphingolipids, diacylglycerols, as well as some pentose 

metabolites, purine and TCA cycle metabolites (Fig S3.11a). Additionally, sex: diet interaction 

analysis which examined whether dietary FA levels affected metabolite differences in males 

compared to females, irrespective of genotype, identified 109 metabolites showing significant 

interactions (Fig S3.11b).  This interaction was highly statistically significant (p0.01) for 

metabolites of lipid pathways, such as polyunsaturated and monohydroxy fatty acids, 
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lysophospholipids, ceramides, sphingomyelins, and several phospholipids. Additionally, 

metabolites from glycolysis, pentose pathway, and glycogen metabolism, glutathione, 

methionine and lysine metabolism, as well as several essential vitamin’s intermediates displayed 

significant interactions. 

Folic acid supplementation modulated liver levels of vitamin A and multiple B vitamins  

Despite the fact that diets with different folate supplementation contained exactly the 

same levels of all other vitamins and microelements, metabolomic data show that liver levels of 

these other vitamins or derived cofactors were different between mouse groups depending on 

different folate supplementation, animal sex and genotypes (Fig 3.8). While liver levels of B1 

(thiamin) were not significantly different among all experimental groups (Fig 3.8a), the thiamin 

diphosphate levels (active cofactor) were higher in female than in male livers (by a factor of 2 or 

more in the KO mice, and by a factor of 1.3 – 2 in the WT). Moreover, the thiamin diphosphate 

levels showed modest increase with the increase of FA in the diet in WT males only, though the 

changes did not reach statistical significance (Fig 3.8b). No significant changes depending on FA 

supplementation were seen in WT males, while KO males demonstrated a trend for cofactor 

reduction. 

With regard to B6, the vitamin forms pyridoxamine, pyridoxamine phosphate and 

pyridoxal phosphate were significantly lower in male versus female livers and female livers 

showed a trend for these forms to inversely associate with the folate supplementation (Fig 3.8c, 

3.8d, 3.8e). At the same time, the levels of the cofactor pyridoxal phosphate, were not 

significantly different between males and females or between genotypes but demonstrated a 

trend to be lower at highest levels of FA (Fig 3.8f).  

Pantothenate (B5) differed significantly between male and female WT mice (Fig 3.8h), 

while liver CoA showed direct association with the dietary folate in females (WT and KO) and 
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KO males (Fig 3.8g). In WT males the levels of the CoA showed trend for negative association 

with dietary FA (Fig 3.8g).  

Vitamin B2, riboflavin, showed statistically significant negative association with dietary 

FA levels in females (WT and KO) and in KO males. Interestingly, no differences in liver levels 

of riboflavin were found in WT males at any level of folate supplementation (Fig 3.8i).  

Finally, retinol (vitamin A) levels in male livers were significantly decreased at highest 

FA supplementation for both genotypes (Fig 3.8j). In general, retinol levels were significantly 

higher in males than in females and female livers did not show response of retinol levels to 

different FA supplementation in WT animals, but vitamin levels were significantly reduced in 

FS-KO group. 
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Figure 3.8 CerS6 knockout and alterations of dietary FA resulted in unexpected changes in 

metabolism of multiple vitamins and derived cofactors. Metabolon ® measurements presented as 

box plots showing minimum and maximum values were plotted using Prism software. Checkered bars, 

FD diet; solid bars, Control diet; striped bars, FS diet. WT shown in black and KO shown in grey. *, 

p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001, determined by One-way ANOVA with Sidak’s 

multiple comparisons test 

 

Discussion  

Our previous studies in A549 and HCT116 cultured cells revealed that perturbations in 

folate metabolism induced by either vitamin depletion, disruption of enzymes in the folate 

pathway, or by pharmacological inhibition of the enzymes result in activation of ceramide 

pathways [12, 249]. Specifically, CerS6 and C16-Cer mediated folate stress response in cultured 

cells [12]. To investigate the folate–ceramide link in a whole animal model we used CerS6 KO 

and WT mice. Folate stress was induced in the animals by feeding purified Envigo diets that 

contained no FA added for folate-deficient diet, or 12ppm FA for folate over-supplemented diet, 

and compared their effects to control diet with 2ppm FA (average rodent chows contain 2-3ppm 

FA). Since we are interested in the animal response to physiological folate restriction and not to 

severe vitamin deficiency, we abstained from the use of antibiotic in the FD diet. Our previous 

work has demonstrated that after two weeks on the FD diet, total blood folate was reduced 2.2-

fold, liver folate was lower by 18% and lung folates dropped by 2.7 fold [254]. Thus, the dietary 

exposure was chosen to be 4 weeks in order to detect early responses in liver. 

Untargeted metabolomic analysis of the liver tissues has demonstrated that, over the 

course of 4 weeks, selected diets were able to alter liver folate pools in all mice. We observed 

both sex- and genotype-dependent differences in response to alterations of dietary FA. Tissue 

levels of folate coenzymes are defined by the vitamin transport as well as by folate enzymes and 

binding proteins (the cell concentration of these are higher than the total folate concentration 

[15]). Folates and FA are transported into the cells via two major facilitative transporters, the 
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ubiquitously expressed RFC and by proton-coupled folate transporter (PCFT), which has more 

limited tissue expression profile [255]. While for RFC a rather complex transcriptional and post-

transcriptional regulation of protein levels has been established [256], no information on sex 

differences in expression or regulation is available. Proton-coupled folate transporter, discovered 

just over a decade ago, is less studied, and likewise, its regulation in different genders has not 

been investigated. In this regard, the folate metabolism enzymes sex-related differences at the 

mRNA and/or protein levels were found for the Shmt, Mthfd1, Hprt1, Bhmt, Ppat and Mtr [31]. 

Additionally, sex-specific dysregulation of cysteine oxidation as well as methionine and folate 

cycles have been found in Cgl-/- mice [257]. The exact mechanisms of these sex-specific effects 

are still not established. Complex formation between FA receptor, progesterone receptor, 

estradiol receptor and cSrc was proposed recently as a mechanism for prevention of FA effects 

on proliferation and migration [258]. However, it is not clear, what authors meant under the term 

“FA receptor”, which type of the folate receptor they investigated, , , or  (if it was the folate 

receptor), and whether this mechanism could affect the vitamin delivery to the cells. Thus, the 

understanding of how exactly folate metabolism is regulated in different sexes is still missing, 

but the fact that CerS6 knockout changed the 7,8-DHF response in male mice and 5-MTHF 

response in female mice, indicates that ceramides might be involved.   

Contrary to what could be expected, levels of 5-MTHF in livers did not follow the trend 

of FA and 7,8-DHF. The FS groups of both genotypes and both sexes showed reduced levels of 

this cofactor (Fig 3.7). Our data agree with the observations published for WT and MTHFR- 

deficient mice (MTHFR+/-) fed diets over-supplemented with FA (20 ppm FA) for 6 months [37]. 

In that study, FA over-supplemented male mice had liver levels of folic acid elevated by 60%, 

and the fraction of 5-MTHF levels in total folate pool was reduced by nearly 40% in WT 
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animals. In MTHFR+/- mice 5-MTHF levels were lower on control diet and were reduced further 

by FA over-supplementation to the same levels as in WT animals. Overall reduction of SAM 

both due to diet and genotype was noted, with more pronounced effect on SAM/SAH ratio [37]. 

Our metabolomic data also show reduction of SAM in both sexes, but this reduction was 

statistically significant in WT males only, and the increase of SAH levels reached significance 

only in KO males and females (data not shown). This difference could be attributed to the shorter 

dietary exposure (4 weeks versus 6 months in the earlier study). The previous study also has 

provided an explanation of over-supplementation effect on 5-MTHF. It demonstrated that FA 

over-supplementation was able to inhibit MTHFR activity in vitro, reduced overall MTHFR 

levels in over-supplemented animals, and also increased phosphorylation of the enzyme, which 

reduced its activity [37]. All of these mechanisms reduced liver methylation capacity on the high 

FA diet, mobilized the use of methyl groups from choline and betaine, altered gene expression of 

one-carbon and lipid metabolism genes and led to hepatocyte degeneration, raising concerns 

about clinical effects of consumption of high-dose FA supplements [37]. Our experiments, in this 

regard, demonstrate that metabolic perturbations in the methyl group metabolism become 

noticeable much earlier, within four weeks of FA over-supplementation, thus, arguing for 

caution with regard to high-dose supplements even when used for a limited time. 

Our metabolomic analysis also included one peripheral tissue, in addition to liver. 

Previous work from our laboratory has found significant histological changes in testes of CerS6 

KO mice which prompted us to include this tissue into analysis. However, there were no changes 

in FA metabolites between WT and CerS6 KO mice testes. Interestingly, 5-MTHF in the testes 

was increased dose-dependently with FA supplementation. This could be explained, by the fact, 

that liver is the main organ of folate metabolism and a major depot of the vitamin [243, 259]. All 
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peripheral tissues are exposed to blood folate only, where 83 - 95% is represented by 5-MTHF 

[254, 260-262]. Thus, peripheral tissues should be less affected by the inhibitory effects of high 

dietary FA on MTHFR.  

The relatively short duration of our study is a probable reason for the lack of major 

histopathological changes which could be related to specific diet or genotype in our animals (Fig 

S3.3, S3.4). Indeed, while the above referenced study have shown increase of liver and spleen 

weights in animals after six month on folate over-supplemented compared to control diet [37], in 

our experiment, organ weights were not different and no significant differences in plasma 

glucose and cholesterol levels were observed (Fig S3.2). While involvement of CerS6 in lipid 

droplet biology has been shown previously [165], in our study occasional lipid droplets 

formation could be seen on any of the three diets, though more often in livers of folate-deficient 

mice, while livers of the KO folate supplemented animals of both sexes were protected from 

steatosis. 

Despite the fact that at the end of dietary treatment the animals body weights were not 

different between different dietary groups, the KO males on all diets gained significantly less 

weight than WT males and had significantly lower fat mass. This protection of the KO males 

from weight gain is in agreement with the results obtained in a different CerS6 KO model, where 

protection from obesity and improvement of glucose tolerance were found [205], thus, spurring 

the interest in pharmacological inhibition of CerS6 for development of therapeutic approaches to 

combat obesity and type 2 diabetes. It should be noted that this previous study used only male 

mice, and the concept of “protection by CerS6 inhibition” requires further investigation of the 

CerS6 function, since our results demonstrate that over the period of 4 weeks, CerS6 KO showed 

no protection in females. Conversely, the use of CerS6 antisense oligonucleotides to knockdown 
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CerS6 in male and female obese mice (either due to HFD feeding or the use of ob/ob mice) 

demonstrated differences between sexes in ceramide levels, specifically hepatic C16:0-Cer [4], 

further underscoring sex differences in responding to dietary intervention. 

Our results are in agreement with conclusions from a study of the relationship between 

hepatic ceramides and insulin resistance in the Hybrid Mouse Diversity Panel [263]. This work 

has found large differences in genetic, hormonal, and dietary regulation of liver C16-, C18- and 

C20-Cer indicating that different ceramides have different effects in males and females. It was 

also demonstrated that part of the sex differences could be explained by inhibitory effect of 

testosterone on the expression of sphingolipid biosynthesis enzymes, such as Sptlc1, CerS6, 

Degs1, Asah1, Cerk and Kdsr [263].  Additionally, associations of several genomic loci with  

C16-, C18-, and C20-Cer were sex-specific. Sex-specific differences in sphingolipid metabolism in 

the aging human brains [264] and sex-specific regulation of CerS6 in a study of experimental 

autoimmune encephalomyelitis [265] have also been reported. It should be noted that evidence 

for sex-specific regulation and function of sphingolipids has been accumulating since 1985 

[266], however the information regarding sex-dependent activity and regulation of sphingolipids 

(as well as their mechanisms) is still scarce. Thus, investigation of sphingolipid effects, as well 

as approaches to target them, need to be evaluated mechanistically in each sex. 

The data generated in this study confirmed our hypothesis that in the whole animal, 

similar to the cultured cells, ceramides respond to alterations of dietary folate. Thus, folate 

depletion in WT livers caused significant increase in C14-Cer levels, however C16-Cer levels 

were not significantly different between control and FD livers in WT animals of both sexes. The 

lack of C16-Cer elevation could be explained by the tight control of this sphingolipid mediator 

due to its role in lipotoxicity [267]. On the other hand, increase of ceramides with longer acyl 
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chains in KO males on the control diet could be explained by the compensatory mechanisms 

induced upon knockout, similar to those observed in cultured cells upon individual CerS 

knockdown [268]. In cultured cells, CerS6 knockdown was accompanied by upregulation of 

CerS1, CerS4 and CerS5 producing C18-Cer; C18-C20-Cer and C14-C16-Cer correspondingly. Such 

up-regulation could explain medium-long-chain ceramide elevation. At the same time, increase 

in expression of CerS5 in the knock-out could also favor heterodimerization of CerS5 and CerS2 

(shown in cultured cells), which had increased activity of CerS5 by a fraction, and activity of 

CerS2 three-fold in CerS6-/- cells [133]. Thus, this mechanism could also account for the increase 

in very-long-chain ceramides in the KO males. Interestingly, no significant changes in the C18- 

and C26-Cer were noted for females, further underscoring sex-specific regulation of ceramides. 

Overall, due to such compensatory changes of ceramide levels in males and rather limited 

ceramide responses in females, no significant changes in total ceramide levels were observed in 

either males or females due to diet alteration or due to genotype.  

In addition to compensatory changes in CerS activity, the homeostatic levels of 

ceramides could be maintained via their conversion to complex sphingolipids, such as SM and/or 

HexCer. Since we did not observe significant changes in C14- and C16- SM in male livers (Fig 

S3.7), SM biosynthesis is likely not the mechanism for stabilization of ceramide concentrations. 

Observed increase of multiple SM species on FS diet was sex-specific for long-chain SM but 

showed no sex difference for very-long-chain SM. This increase in SMs on folate over-

supplemented diets could be related to the function of folate metabolism as a supplier of methyl 

groups for the metabolic processes, including the formation of phosphatidylcholine from 

phosphatidylethanolamine via PEMT pathway [269, 270], with phosphatidylcholine donating the 

phosphocholine group for biosynthesis of SM.   
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Hexosyl-ceramides, another group of complex sphingolipids, also showed sensitivity to 

dietary folate. Both C14- and C16-HexCer were elevated in livers on FD diet in WT and in CerS6 

KO mice, with the changes in males being statistically significant, and in females following the 

trend, but not reaching significance. These sphingolipids are generated by glycosylation of 

corresponding ceramides; thus, their elevation masks the increase in production of ceramide by 

CerS6. Ceramides are important regulatory molecules and their levels must be tightly regulated 

[271, 272]. Conversion of Cer to SM or HexCer could function as a safety mechanism protecting 

from damaging effect of response to dietary alterations [273, 274]. C14-HexCer is significantly 

higher in females than in males for both genotypes, while C16-HexCer is higher in females than 

in males for WT mice, and shows no significant difference in KO mice, pointing to sex-specific 

regulation of liver C16-Cer by CerS6. Interestingly, very-long-chain Cer were insensitive to folate 

depletion in males but responded to folate depletion in females. Total HexCer also showed 

statistically significant response to folate depletion only in female KO, with similar trends for 

WT females and both WT and KO males. The consequences of this response are unclear.  

Hexosyl-ceramides represent the simplest members and precursors for a whole class of 

membrane lipids, the glycosphingolipids [275]. Only glucose or galactose can be added to 

ceramide head group in mammalian cells [276] and 85% of complex sphingolipids have glucose 

as a first sugar [277]. Apart from serving as basic substrates for building complex sphingolipids, 

hexosyl-ceramides have their own biochemical functions. Glucosylceramide is required for 

intracellular membrane transport, is involved in control of cell proliferation and survival, 

multidrug resistance, natural killer T-cell functions, while galactosyl-ceramide plays major role 

in myelin formation, promotes immunotolerance and induction of cytokines [276]. 
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Unfortunately, our analysis was not able to differentiate between glucosyl- and galactosyl-

ceramide. 

Overall, our study has shown that dietary folate affects ceramides as well as complex 

sphingolipids in both sex and genotype-dependent manners. Sphingolipids, and ceramides in 

particular, are established regulators of proliferation, differentiation, senescence and apoptosis. 

Thus, it is easy to conclude that alteration of dietary folate could have an effect on these 

important cellular processes. One limitation to the current study is that hepatic sphingolipid pools 

were measured but none of the other tissues were analyzed to understand how other tissues may 

have been affected by dietary FA intervention or by knockout of CerS6. We also did not 

investigate effects of FA on lipoprotein particles composition or FA effects on lipids delivery 

from the liver to other tissues. 

We employed the untargeted metabolomics to investigate how broadly the response to 

dietary FA affects liver metabolism and found that sex was the strongest factor separating the 

liver metabolomes while genotype and diet were weaker discriminators. The random forest 

analysis, an unbiased and supervised classification technique splitting data into groups based on 

the biochemicals providing best separation between groups, resulted in predictive accuracy of 

64% when all 12 groups were included, compared to 8.3% by random chance alone (Fig S3.8b). 

The top 30 biochemicals ranked on their importance in separating metabotypes of the groups 

included C16-acyl chain containing Cer, SM, and GlucCer, folate coenzymes, FIGLU and 

gamma-glutamyl-peptides, all of which are linked to the effect of genotype and dietary FA (Fig 

S3.9). Several phosphatidylethanolamines were also among the top metabolites (Fig 3.6a) 

indicating broader effect of the diet and genotype in our experiment. On the contrary, levels of 

multiple long-chain fatty acids as well as diacylglycerols were reduced, especially in male KO 
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mice (Fig 3.6b, 3.6c). Apparently, changes in sphingolipid biosynthesis due to absence of CerS6 

altered free fatty acid utilization as well as phospholipid homeostasis. 

Additionally, we evaluated whether the genotype of the animals had an impact on 

metabolite levels assessed in the male compared to female samples, irrespective of the diet fed 

(genotype: sex interaction, Fig S3.11a). Out of total 143 biochemicals displaying significant 

genotype: sex interaction, the top 46 metabolites are sphingolipids, phosphatidylethanolamines, 

diacylglycerols, long-chain fatty acids, as well as guanosine, TCA cycle, glycolysis, pentose and 

fructose, mannose and galactose metabolic pathways. The sex: diet interaction evaluated the diet 

effect on the differences in metabolites assessed in males and females, irrespective of genotype. 

Out of 86 metabolites demonstrating genotype: diet interactions (Fig S3.11b), the top 46 

metabolites (with p-value  0.01) represented a more versatile group: polyunsaturated fatty acids, 

monohydroxy fatty acids, long-chain fatty acids, ceramide, sphingomyelin, 

phosphatidylcholines, phosphatidylethanolamines, phosphatidylserine, lysophospholipids, 

branched chain fatty acid metabolism, glycolysis, glycogen, pentose and fructose, mannose and 

galactose metabolism, glutamate, methionine, lysine and glutathione metabolism. Importantly, 

sex: diet interaction was also found for multiple vitamin metabolites, such as folate, 

pantothenate, and vitamin B6.  

Closer examination of vitamin levels revealed previously unknown responses of multiple 

vitamins levels to changes of dietary FA. The initial expectation was that since all vitamins’ 

supplementation levels (excluding FA) were absolutely identical in all diets and these vitamins 

do not use the FA transporters, the vitamins and their metabolite/cofactor forms will be at the 

same levels in mouse tissues from different groups. However, liver metabolomic analysis 



 

63 

revealed unexpected differences in the multiple vitamin cofactors levels between the groups that 

have identical supplementation levels.  

For example, thiamin (B1) liver levels were not significantly different between the groups 

(Fig 3.8a), indicating that cellular vitamin transport was not affected by FA. However, the active 

coenzyme form thiamine diphosphate levels were changed depending on dietary FA and animal 

sex (Fig 3.8b). Sex difference in the levels of this cofactor could be linked to the differences in 

the levels of enzymes utilizing it, and while there is no data on male/female enzyme expression, 

a higher level of pyruvate dehydrogenase complex activity was found in brain mitochondria of 

young adult female mice compared to young adult males [278], which could be a reflection of 

higher expression levels. While male WT mice did not show changes in thiamin diphosphate 

levels, the KO males had decreased levels with increase of dietary FA, similar to females. It is 

not clear why the active coenzyme levels would be reduced as dietary FA increased, but one of 

the explanations could be the reduced tissue adenosine triphosphate (ATP) levels, which is 

required to phosphorylate the imported vitamin in the cells. At present, there is no information 

regarding the FA over-supplementation effects on hepatocyte ATP levels, however, our 

metabolomic data show significant accumulation of succinyl-carnitine in over-supplemented 

males and females as well as reduced isocitrate levels in over-supplemented groups, with the 

exception of WT females. These changes in TCA cycle metabolites could indicate the 

impairment in the cellular ATP production. However, this needs to be confirmed experimentally. 

Another vitamin demonstrating response to dietary FA is B6.  Specifically, the vitamin 

forms pyridoxamine, pyridoxamine phosphate, and pyridoxal were higher in females and were 

reduced with increase of FA in females and KO males, although not always reaching statistical 

significance (Fig 3.8c, 3.8d, 3.8e). Wild-type males did not show such reduction for any of the 
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forms. The active coenzyme form pyridoxal phosphate did not show sex-related difference and 

demonstrated reduced coenzyme levels with increase of FA only in KO males and WT females 

(Fig 3.8f). WT males and KO females did not show such trend. Pyridoxal phosphate is involved 

in folate metabolism serving as a cofactor for enzyme serine hydroxymethyltransferase (SHMT), 

which brings one-carbon groups to folate cycle [279]. However, it is still not clear how FA could 

affect this cofactor levels. Similar to thiamin diphosphate the modulation of ATP levels could be 

responsible for the coenzyme decrease. 

Vitamin B5 (pantothenate) differed between male and female WT mice and between WT 

female mice between low and high FA diets. Additionally, the concentration of cofactor CoA, 

showed dependence on FA dietary supplementation. In this case, the cofactor concentrations 

increased with the increase of the FA in females of both genotypes, and in male KO mice (Fig 

3.8g). Wild-type males rather showed tendency to decrease CoA concentrations with FA increase 

(Fig 3.8g) but this trend did not reach statistical significance. Correlation of CoA changes with 

FA levels could be linked to the CoA biosynthetic pathway. Indeed, elevated cysteine 

concentrations in female FS groups of both genotypes and male KO FS mice could drive 

increase in formation of 4-phospho-pantetheine and the coenzyme production.  

Riboflavin, vitamin B2, was also augmented by FA supplementation, with increase in FA 

causing reduction of tissue vitamin levels in females of both genotypes and in KO males (Fig 

3.8i). WT males did not show changes of B2 cofactor dependent on FA. Riboflavin is involved in 

the folate cycle by being a co-factor of MTHFR and methionine synthase, and thus its reduction 

upon FA supplementation could affect the one-carbon groups flow to the methylation processes. 

Interestingly, an intervention study of the folate and riboflavin supplementation effects on 

lowering plasma homocysteine in humans also noted that supplementation with FA (400g/day) 
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decreased the riboflavin status in humans [280]. The vitamin status in the study was evaluated by 

measurements of plasma riboflavin levels and by erythrocyte glutathione reductase activation 

values as a surrogate of the cellular vitamin status. No information on tissue vitamin levels was 

obtained in that study. While increased rate of B2 turnover or increased binding of FAD to 

MTHFR were proposed as possible mechanisms [280] there is a lack of studies on riboflavin 

interacting with or being regulated by FA. 

Another vitamin that displayed response to FA levels was a fat-soluble vitamin retinol 

(vitamin A). Retinol levels were higher in males than in females, and in WT and KO males and 

KO females they were significantly reduced with increase of FA in the diet (Fig 3.8j). As in the 

case of pyridoxal and riboflavin, it is not clear how water-soluble FA could affect tissue levels of 

vitamin A. Potentially changes in sphingolipids could affect liver stores of retinol. 

Thus, our metabolomic data show perturbations in multiple vitamins metabolism upon 

FA over-supplementation, which could affect numerous metabolic pathways. Significant 

differences were observed for several vitamins between males and females, pointing to sex 

differences in vitamins metabolism. Importantly, knockout of CerS6 resulted in shift from the 

WT vitamin-FA relationship pattern to the relationship pattern of the opposite sex. For example, 

for thiamin diphosphate, pyridoxamine phosphate, pyridoxal, CoA, and riboflavin, the pattern of 

response to FA in male KO livers was similar to a female response pattern and not to WT male 

response.  At the same time, for pyridoxal phosphate and retinol, the pattern of response to FA in 

KO females was similar to male response patterns and not to a WT female response. While 

multiple signaling and regulatory roles for C16-Cer have been established, current knowledge of 

its effects on vitamin metabolism is lacking. 
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Conclusion 

In conclusion, our study determined that dietary folic acid depletion or over-

supplementation affect levels of ceramides and complex sphingolipids in mouse livers and that 

CerS6 plays a central role in this adaptation. Sphingolipid response to dietary folate in our study 

depended on sex and CerS6 genotype, and sphingolipids with C14- and C16-acyl chains were 

significantly higher in females than in males. This underscores the need for establishing sex-

specific reference values for sphingolipid biomarkers and for the investigation of sex-specific 

mechanisms of their regulation. Additionally, CerS6 and CerS5 have been investigated for their 

role in disease states including obesity and metabolic syndrome [4, 173, 205] but there is little 

data about how short- and long-term dietary changes affect sphingolipid levels. While knockout 

or knockdown of these CerS has been found to be protective, it is necessary to understand how 

sphingolipids respond to diet in order to translate these findings to humans. Despite being 

required in relatively small quantities in the diet, folate is clearly important for liver metabolism 

including metabolism of sphingolipids. 

Metabolomic analysis indicates that both dietary folic acid and CerS6 knockout have 

pleiotropic effects on liver metabolome, and some of these effects, such as alterations in tissue 

levels of other vitamins or their cofactor forms, cannot be linked directly to folate metabolism 

but may be mediated by additional regulators. Further studies of the mechanisms connecting 

folate and sphingolipid metabolism as well as characterization of the FA effects on liver 

metabolic pathways will help to avoid unwanted side-effects of over-supplementation. 
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Supplementary Materials 

 
 

Figure S3.1 CerS6 protein is not detected in livers of CerS6 KO mice by Western blotting 

 

 
Figure S3.2 Knockout of CerS6 did not change liver weight, nor plasma glucose, nor 

cholesterol. Data are shown as mean + SEM, n=5. Checkered bars, FD diet; solid bars, Control diet; 

striped bars, FS diet. WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; 

****, p<0.0001 determined by One-way ANOVA with Sidak’s multiple comparisons test 
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Figure S3.3 Liver sections stained with H&E revealed no significant differences between 

male WT and KO mice on any diet 
  

Ctrl

FD

FS

M-WT M-KO
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Figure S3.4 Liver sections stained with H&E revealed no significant differences between 

female WT and KO mice on any diet 
 

 

Figure S3.5 Folate deficient diet elevated long-chain ceramides while CerS6 KO elevated 

very-long-chain ceramides in male mice. Data presented as mean + SEM, n=5. Checkered bars, FD 

diet; solid bars, Control diet. WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; ***, 

p<0.001; ****, p<0.0001, determined by Student’s t-test between genotypes and diets 
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Figure S3.6 Ceramides levels are mostly unchanged in female mice. C18- and C20-ceramides in 

CerS6 KO mice were the only species responding to FD diet. Data represent mean + SEM. Checkered 

bars, FD diet; solid bars, Control diet. WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; 

***, p<0.001; ****, p<0.0001 determined by Student’s t-test between genotypes and diets 

 

 

Figure S3.7 Sphingomyelins are elevated in response to FA over-supplementation. Male mice 

did not show significant changes on FS diet changes in sphingomyelin levels when placed a folic acid 

over-supplemented diet for both WT and KO mice but there were more changes in females than males. 

Data are shown as mean values + SEM. Checkered bars: FD diet, Solid bars: Control diet, Striped bars: 

FS diet. WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001, ****, p<0.0001 

according to One-way ANOVA with Sidak’s multiple comparisons test  
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Figure S3.8 Metabolomics data summary. (a) Numbers of biochemicals out of total 736 measured 

metabolites that show differences between genotypes, gender and diets, as well as interactions between 

genotype and gender, genotype and diet, gender and diet. (b) Random forest analysis of the metabolomic 

data based on the biochemicals that provide best separation between the groups gives predicted accuracy 

of 64% when 12 experimental groups were compared. Predictive accuracy when separation into groups is 

done by random chance alone is 8.3% 
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WT  Ctrl F 0 0 0 1 2 2 0 0 0 0 0 0 80%
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CerS6 KO Ctrl M 0 0 0 0 0 0 3 1 1 0 0 0 40%
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CerS6Ko FS M 0 0 0 0 0 0 0 1 4 0 0 0 20%

WT  Ctrl M 0 0 0 0 0 0 0 0 0 4 1 0 20%

WT FD M 0 0 0 0 0 0 0 1 0 1 2 1 60%

WT FS M 0 0 0 0 0 0 0 0 1 0 0 4 20%

Predictive accuracy =  64%
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Biochemicals 

ANOVA Main Effects 
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Diet Main 

Effect 

Genotype: 
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Interaction 
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Diet 

Interaction 

Sex: Diet 

Interaction 

Genotype: 
Sex: Diet 

Interaction 

Total biochemicals p<0.05 273 550 298 143 86 112 44 

Total biochemicals 

0.05<p<0.10 
47 35 68 57 44 70 49 
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Figure S3.9 Top 30 biochemicals ranked by their importance in separating metabolic 

profiles of 12 groups 
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Figure S3.10 CerS6 KO livers have significantly lower levels of C16-acyl chain-based 

ceramide (a) and sphingomyelin (b) species and significantly higher levels of very-long-

chain sphingomyelins in both male and female mice 

Sub Pathway Biochemical Name

sphinganine 1.22 1.09 0.94 1.30 1.28 0.97

palmitoyl dihydrosphingomyelin (d18:0/16:0)* 0.92 0.79 0.91 0.96 1.04 0.93

behenoyl dihydrosphingomyelin (d18:0/22:0)* 1.12 1.48 1.58 1.41 1.43 1.19

palmitoyl sphingomyelin (d18:1/16:0) 0.56 0.46 0.53 0.70 0.71 0.64

stearoyl sphingomyelin (d18:1/18:0) 1.17 1.04 1.28 1.01 1.14 1.05

behenoyl sphingomyelin (d18:1/22:0)* 1.16 1.20 1.59 1.15 1.32 1.33

tricosanoyl sphingomyelin (d18:1/23:0)* 1.25 1.46 1.65 1.09 1.34 1.33

lignoceroyl sphingomyelin (d18:1/24:0) 1.01 1.33 1.49 1.10 1.46 1.56

sphingomyelin (d18:1/14:0, d16:1/16:0)* 0.63 0.55 0.48 0.30 0.38 0.35

sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0)* 0.08 0.07 0.08 0.10 0.10 0.11

sphingomyelin (d18:2/16:0, d18:1/16:1)* 0.50 0.43 0.47 0.51 0.53 0.55

sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0) 0.86 0.77 0.87 0.93 0.85 0.85

sphingomyelin (d18:1/18:1, d18:2/18:0) 1.13 1.01 1.17 0.83 1.01 0.95

sphingomyelin (d18:1/20:0, d16:1/22:0)* 1.28 1.14 1.52 1.09 1.21 1.05

sphingomyelin (d18:1/20:1, d18:2/20:0)* 1.21 1.19 1.48 0.67 0.96 0.83

sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0)* 1.10 1.11 1.64 0.88 0.89 0.96

sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1)* 1.16 1.05 1.33 0.86 1.13 0.90

sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1)* 1.08 1.05 1.11 0.86 1.04 0.92

sphingomyelin (d18:1/24:1, d18:2/24:0)* 1.19 1.23 1.44 1.22 1.53 1.16

sphingomyelin (d18:2/24:1, d18:1/24:2)* 1.34 1.14 1.42 1.04 1.28 1.10

sphingosine 1.07 1.02 0.95 1.07 1.14 0.86

phytosphingosine 1.04 1.04 1.00 0.94 1.02 1.00

sphingomyelin (d18:2/23:1)* 1.08 0.95 1.27 0.68 0.89 0.86

sphingomyelin (d18:2/24:2)* 0.96 1.43 0.84 1.09 1.03 1.48

sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, d19:1/24:0)* 1.28 1.06 1.39 1.27 1.49 1.63

sphingomyelin (d18:1/22:2, d18:2/22:1, d16:1/24:2)* 1.25 1.13 1.35 0.59 0.95 0.87

sphingomyelin (d18:0/20:0, d16:0/22:0)* 1.69 1.44 2.31 1.25 1.73 1.24

sphingomyelin (d18:0/18:0, d19:0/17:0)* 1.46 1.38 1.62 1.15 1.40 1.17

sphingomyelin (d18:1/19:0, d19:1/18:0)* 1.29 1.02 1.39 0.91 0.89 0.88

heptadecasphingosine (d17:1) 0.70 0.67 0.61 0.57 0.61 0.58

hexadecasphingosine (d16:1)* 0.77 0.82 0.83 0.73 0.83 0.79

sphingadienine 1.02 0.95 0.89 0.77 0.88 0.79

Sphingolipid Metabolism

Fold Change

KO CTRL 

F WT 

CTRL F

KO FD F 

WT FD F

KO FS F 

WT FS F

KO CTRL 

M WT 

CTRL M

KO FD M 

WT FD M

KO FS M 

WT FS M

Sub Pathway Biochemical Name

Dihydroceramides N-palmitoyl-sphinganine (d18:0/16:0) 0.75 0.63 0.62 1.05 1.00 0.75

N-palmitoyl-sphingosine (d18:1/16:0) 0.37 0.35 0.39 0.74 0.74 0.48

N-stearoyl-sphingosine (d18:1/18:0)* 1.08 0.90 1.00 1.20 1.31 0.89

ceramide (d18:1/14:0, d16:1/16:0)* 0.47 0.47 0.40 0.29 0.39 0.27

ceramide (d18:1/17:0, d17:1/18:0)* 0.77 0.60 0.77 1.00 0.94 0.70

ceramide (d18:1/20:0, d16:1/22:0, d20:1/18:0)* 1.10 1.10 1.20 1.08 1.17 0.96

ceramide (d18:2/24:1, d18:1/24:2)* 1.08 1.03 1.17 1.06 1.24 0.97

N-(2-hydroxypalmitoyl)-sphingosine (d18:1/16:0(2OH)) 0.53 0.49 0.71 0.69 0.85 0.49

N-erucoyl-sphingosine (d18:1/22:1)* 1.06 1.03 1.09 0.86 1.15 0.78

N-palmitoyl-sphingadienine (d18:2/16:0)* 0.43 0.36 0.44 0.59 0.61 0.50

N-behenoyl-sphingadienine (d18:2/22:0)* 0.92 0.94 1.22 0.96 0.92 1.03

N-palmitoyl-heptadecasphingosine (d17:1/16:0)* 0.07 0.07 0.07 0.09 0.12 0.08

glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) 0.15 0.13 0.15 0.27 0.23 0.22

glycosyl-N-stearoyl-sphingosine (d18:1/18:0) 0.90 0.75 0.69 1.02 1.09 0.74

glycosyl-N-arachidoyl-sphingosine (d18:1/20:0)* 1.02 1.03 0.97 0.81 0.93 0.86

glycosyl-N-erucoyl-sphingosine (d18:1/22:1)* 0.88 0.91 0.85 0.50 0.81 0.65

glycosyl ceramide (d18:1/23:1, d17:1/24:1)* 0.86 0.82 0.89 0.65 0.82 0.82

glycosyl-N-nervonoyl-sphingosine (d18:1/24:1)* 0.93 1.00 0.94 0.92 1.14 0.94

glycosyl ceramide (d18:2/24:1, d18:1/24:2)* 1.12 0.99 1.11 1.03 1.28 1.07

lactosyl-N-palmitoyl-sphingosine (d18:1/16:0) 0.52 0.35 0.43 0.36 0.45 0.52

lactosyl-N-nervonoyl-sphingosine (d18:1/24:1)* 1.06 1.06 0.98 1.14 1.27 1.10

Ceramides

Hexosylceramides

Lactosylceramides

Fold Change

KO CTRL 

F WT 

CTRL F

KO FD F 

WT FD F

KO FS F 

WT FS F

KO CTRL 

M WT 

CTRL M

KO FD M 

WT FD M

KO FS M 

WT FS M

a

b
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a b
Genotype/Sex

Sub-pathway Metabolite p-value

Ceramides N-palmitoyl-sphingosine (d18:1/16:0) 0.00000001

Sphingolipid Metabolism palmitoyl sphingomyelin (d18:1/16:0) 0.00000015

Chemical S-(3-hydroxypropyl)mercapturic acid (HPMA) 0.00000365

Sphingolipid Metabolism sphingomyelin (d18:1/22:2, d18:2/22:1, d16:1/24:2)* 0.00000719

Phosphatidylcholine (PC) 1-palmitoyl-2-gamma-linolenoyl-GPC (16:0/18:3n6)* 0.00001063

Hexosylceramides (HCER) glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) 0.00001356

Diacylglycerol diacylglycerol (12:0/18:1, 14:0/16:1, 16:0/14:1) [1]* 0.00001418

Ceramides N-palmitoyl-sphingadienine (d18:2/16:0)* 0.00001431

Dihydroceramides N-palmitoyl-sphinganine (d18:0/16:0) 0.00001801

Diacylglycerol diacylglycerol (14:0/18:1, 16:0/16:1) [2]* 0.00006077

Sphingolipid Metabolism sphingomyelin (d18:1/14:0, d16:1/16:0)* 0.00006145

Diacylglycerol diacylglycerol (14:0/18:1, 16:0/16:1) [1]* 0.00006517

Sphingolipid Metabolism sphingomyelin (d18:1/20:1, d18:2/20:0)* 0.00007675

TCA Cycle succinylcarnitine (C4-DC) 0.00010000

Diacylglycerol diacylglycerol (12:0/18:1, 14:0/16:1, 16:0/14:1) [2]* 0.00010000

Diacylglycerol palmitoyl-myristoyl-glycerol (16:0/14:0) [2] 0.00010000

Diacylglycerol palmitoyl-oleoyl-glycerol (16:0/18:1) [2]* 0.00010000

Sphingolipid Metabolism sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0)* 0.00010000

Diacylglycerol palmitoyl-myristoyl-glycerol (16:0/14:0) [1]* 0.00020000

Diacylglycerol palmitoyl-oleoyl-glycerol (16:0/18:1) [1]* 0.00020000

Diacylglycerol oleoyl-oleoyl-glycerol (18:1/18:1) [2]* 0.00030000

Phosphatidylethanolamine (PE) 1,2-dilinoleoyl-GPE (18:2/18:2)* 0.00040000

Diacylglycerol palmitoleoyl-oleoyl-glycerol (16:1/18:1) [2]* 0.00040000

Long Chain Fatty Acid oleate/vaccenate (18:1) 0.00050000

Purine Metabolism, Guanine containing guanosine 0.00050000

Pentose Metabolism ribulose/xylulose 0.00060000

Phosphatidylethanolamine (PE) 1-linoleoyl-2-arachidonoyl-GPE (18:2/20:4)* 0.00060000

Sphingolipid Metabolism sphingomyelin (d18:1/19:0, d19:1/18:0)* 0.00070000

Pyrimidine Metabolism, Thymine containing 3-aminoisobutyrate 0.00100000

Glutathione Metabolism ophthalmate 0.00120000

Long Chain Fatty Acid palmitoleate (16:1n7) 0.00130000

Guanidino and Acetamido Metabolism guanidinosuccinate 0.00140000

Phosphatidylcholine (PC) 1-myristoyl-2-palmitoyl-GPC (14:0/16:0) 0.00150000

Chemical O-sulfo-L-tyrosine 0.00160000

Glycolysis, Gluconeogenesis, and Pyruvate Metabolism pyruvate 0.00170000

Fructose, Mannose and Galactose Metabolism galactonate 0.00180000

Fatty Acid, Monohydroxy 16-hydroxypalmitate 0.00180000

Plasmalogen 1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1)* 0.00190000

Sterol 4-cholesten-3-one 0.00230000

Diacylglycerol diacylglycerol (16:1/18:2 [2], 16:0/18:3 [1])* 0.00240000

Phosphatidylcholine (PC) 1-palmitoyl-2-dihomo-linolenoyl-GPC (16:0/20:3n3 or 6)* 0.00260000

Long Chain Fatty Acid myristate (14:0) 0.00330000

Diacylglycerol linoleoyl-docosahexaenoyl-glycerol (18:2/22:6) [2]* 0.00340000

Ceramides ceramide (d18:1/14:0, d16:1/16:0)* 0.00340000

Diacylglycerol oleoyl-oleoyl-glycerol (18:1/18:1) [1]* 0.00350000

Long Chain Fatty Acid eicosenoate (20:1) 0.00380000

Sex/Diet

Sub-pathway Biochemical p-value

Fatty Acid, Monohydroxy 3-hydroxylaurate 0.0001

Chemical S-(3-hydroxypropyl)mercapturic acid (HPMA) 0.0002

Polyunsaturated Fatty Acid (n3 and n6) docosahexaenoate (DHA; 22:6n3) 0.0003

Glycolysis, Gluconeogenesis, and Pyruvate Metabolism dihydroxyacetone phosphate (DHAP) 0.0005

Phosphatidylethanolamine (PE) 1-stearoyl-2-oleoyl-GPE (18:0/18:1) 0.0006

Methionine, Cysteine, SAM and Taurine Metabolism N-acetyltaurine 0.0008

Polyunsaturated Fatty Acid (n3 and n6) linoleate (18:2n6) 0.0008

Polyunsaturated Fatty Acid (n3 and n6) linolenate [alpha or gamma; (18:3n3 or 6)] 0.0009

Fatty Acid, Monohydroxy 16-hydroxypalmitate 0.0009

Sphingolipid Metabolism sphingomyelin (d18:1/18:1, d18:2/18:0) 0.0012

Polyunsaturated Fatty Acid (n3 and n6) docosapentaenoate (n3 DPA; 22:5n3) 0.0013

Polyunsaturated Fatty Acid (n3 and n6) arachidonate (20:4n6) 0.0014

Lysophospholipid 1-oleoyl-GPE (18:1) 0.0014

Polyunsaturated Fatty Acid (n3 and n6) heneicosapentaenoate (21:5n3) 0.0016

Glycogen Metabolism maltopentaose 0.0018

Pyrimidine Metabolism, Thymine containing thymine 0.0018

Pantothenate and CoA Metabolism 3'-dephosphocoenzyme A 0.0023

Phosphatidylethanolamine (PE) 1-linoleoyl-2-arachidonoyl-GPE (18:2/20:4)* 0.0026

Glutamate Metabolism glutamate, gamma-methyl ester 0.0029

Long Chain Fatty Acid palmitate (16:0) 0.0029

Phosphatidylcholine (PC) 1,2-dilinoleoyl-GPC (18:2/18:2) 0.0031

Methionine, Cysteine, SAM and Taurine Metabolism N-formylmethionine 0.0033

Lysophospholipid 1-arachidonoyl-GPI (20:4)* 0.0033

Lysine Metabolism N-trimethyl 5-aminovalerate 0.0034

Phosphatidylcholine (PC) 1-linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6)* 0.0035

Ceramides N-(2-hydroxypalmitoyl)-sphingosine (d18:1/16:0(2OH)) 0.0035

Endocannabinoid N-oleoyltaurine 0.0036

Lysophospholipid 1-palmitoyl-GPE (16:0) 0.0036

Fatty Acid Metabolism (also BCAA Metabolism) methylmalonate (MMA) 0.0039

Pantothenate and CoA Metabolism pantetheine 0.0039

Secondary Bile Acid Metabolism taurolithocholate 0.0044

Long Chain Fatty Acid stearate (18:0) 0.0045

Glycogen Metabolism maltohexaose 0.0054

Folate Metabolism 7,8-dihydrofolate 0.0054

Lysophospholipid 1-arachidonoyl-GPE (20:4n6)* 0.0057

Long Chain Fatty Acid oleate/vaccenate (18:1) 0.0058

Pentose Metabolism ribulose/xylulose 0.0061

Glycogen Metabolism maltotetraose 0.0066

Phosphatidylethanolamine (PE) 1-oleoyl-2-linoleoyl-GPE (18:1/18:2)* 0.0066

Glycolysis, Gluconeogenesis, and Pyruvate Metabolism glucose 0.0067

Glutathione Metabolism cysteinylglycine 0.0070

Polyunsaturated Fatty Acid (n3 and n6) dihomo-linolenate (20:3n3 or n6) 0.0071

Fructose, Mannose and Galactose Metabolism mannitol/sorbitol 0.0073

Fatty Acid, Monohydroxy 3-hydroxylaurate 0.0079

Phosphatidylserine (PS) 1-stearoyl-2-oleoyl-GPS (18:0/18:1) 0.0101

Vitamin B6 Metabolism pyridoxamine 0.0101
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Figure S3.11 Metabolites exhibiting the most significant genotype: sex interactions (a) and 

sex: diet interactions (b). Metabolites are listed with sub-pathway to which they belong   

a b
Genotype/Sex

Sub-pathway Metabolite p-value

Ceramides N-palmitoyl-sphingosine (d18:1/16:0) 0.00000001

Sphingolipid Metabolism palmitoyl sphingomyelin (d18:1/16:0) 0.00000015

Chemical S-(3-hydroxypropyl)mercapturic acid (HPMA) 0.00000365

Sphingolipid Metabolism sphingomyelin (d18:1/22:2, d18:2/22:1, d16:1/24:2)* 0.00000719

Phosphatidylcholine (PC) 1-palmitoyl-2-gamma-linolenoyl-GPC (16:0/18:3n6)* 0.00001063

Hexosylceramides (HCER) glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) 0.00001356

Diacylglycerol diacylglycerol (12:0/18:1, 14:0/16:1, 16:0/14:1) [1]* 0.00001418

Ceramides N-palmitoyl-sphingadienine (d18:2/16:0)* 0.00001431

Dihydroceramides N-palmitoyl-sphinganine (d18:0/16:0) 0.00001801

Diacylglycerol diacylglycerol (14:0/18:1, 16:0/16:1) [2]* 0.00006077

Sphingolipid Metabolism sphingomyelin (d18:1/14:0, d16:1/16:0)* 0.00006145

Diacylglycerol diacylglycerol (14:0/18:1, 16:0/16:1) [1]* 0.00006517

Sphingolipid Metabolism sphingomyelin (d18:1/20:1, d18:2/20:0)* 0.00007675

TCA Cycle succinylcarnitine (C4-DC) 0.00010000

Diacylglycerol diacylglycerol (12:0/18:1, 14:0/16:1, 16:0/14:1) [2]* 0.00010000

Diacylglycerol palmitoyl-myristoyl-glycerol (16:0/14:0) [2] 0.00010000

Diacylglycerol palmitoyl-oleoyl-glycerol (16:0/18:1) [2]* 0.00010000

Sphingolipid Metabolism sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0)* 0.00010000

Diacylglycerol palmitoyl-myristoyl-glycerol (16:0/14:0) [1]* 0.00020000

Diacylglycerol palmitoyl-oleoyl-glycerol (16:0/18:1) [1]* 0.00020000

Diacylglycerol oleoyl-oleoyl-glycerol (18:1/18:1) [2]* 0.00030000

Phosphatidylethanolamine (PE) 1,2-dilinoleoyl-GPE (18:2/18:2)* 0.00040000

Diacylglycerol palmitoleoyl-oleoyl-glycerol (16:1/18:1) [2]* 0.00040000

Long Chain Fatty Acid oleate/vaccenate (18:1) 0.00050000

Purine Metabolism, Guanine containing guanosine 0.00050000

Pentose Metabolism ribulose/xylulose 0.00060000

Phosphatidylethanolamine (PE) 1-linoleoyl-2-arachidonoyl-GPE (18:2/20:4)* 0.00060000

Sphingolipid Metabolism sphingomyelin (d18:1/19:0, d19:1/18:0)* 0.00070000

Pyrimidine Metabolism, Thymine containing 3-aminoisobutyrate 0.00100000

Glutathione Metabolism ophthalmate 0.00120000

Long Chain Fatty Acid palmitoleate (16:1n7) 0.00130000

Guanidino and Acetamido Metabolism guanidinosuccinate 0.00140000

Phosphatidylcholine (PC) 1-myristoyl-2-palmitoyl-GPC (14:0/16:0) 0.00150000

Chemical O-sulfo-L-tyrosine 0.00160000

Glycolysis, Gluconeogenesis, and Pyruvate Metabolism pyruvate 0.00170000

Fructose, Mannose and Galactose Metabolism galactonate 0.00180000

Fatty Acid, Monohydroxy 16-hydroxypalmitate 0.00180000

Plasmalogen 1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1)* 0.00190000

Sterol 4-cholesten-3-one 0.00230000

Diacylglycerol diacylglycerol (16:1/18:2 [2], 16:0/18:3 [1])* 0.00240000

Phosphatidylcholine (PC) 1-palmitoyl-2-dihomo-linolenoyl-GPC (16:0/20:3n3 or 6)* 0.00260000

Long Chain Fatty Acid myristate (14:0) 0.00330000

Diacylglycerol linoleoyl-docosahexaenoyl-glycerol (18:2/22:6) [2]* 0.00340000

Ceramides ceramide (d18:1/14:0, d16:1/16:0)* 0.00340000

Diacylglycerol oleoyl-oleoyl-glycerol (18:1/18:1) [1]* 0.00350000

Long Chain Fatty Acid eicosenoate (20:1) 0.00380000

Sex/Diet

Sub-pathway Biochemical p-value

Fatty Acid, Monohydroxy 3-hydroxylaurate 0.0001

Chemical S-(3-hydroxypropyl)mercapturic acid (HPMA) 0.0002

Polyunsaturated Fatty Acid (n3 and n6) docosahexaenoate (DHA; 22:6n3) 0.0003

Glycolysis, Gluconeogenesis, and Pyruvate Metabolism dihydroxyacetone phosphate (DHAP) 0.0005

Phosphatidylethanolamine (PE) 1-stearoyl-2-oleoyl-GPE (18:0/18:1) 0.0006

Methionine, Cysteine, SAM and Taurine Metabolism N-acetyltaurine 0.0008

Polyunsaturated Fatty Acid (n3 and n6) linoleate (18:2n6) 0.0008

Polyunsaturated Fatty Acid (n3 and n6) linolenate [alpha or gamma; (18:3n3 or 6)] 0.0009

Fatty Acid, Monohydroxy 16-hydroxypalmitate 0.0009

Sphingolipid Metabolism sphingomyelin (d18:1/18:1, d18:2/18:0) 0.0012

Polyunsaturated Fatty Acid (n3 and n6) docosapentaenoate (n3 DPA; 22:5n3) 0.0013

Polyunsaturated Fatty Acid (n3 and n6) arachidonate (20:4n6) 0.0014

Lysophospholipid 1-oleoyl-GPE (18:1) 0.0014

Polyunsaturated Fatty Acid (n3 and n6) heneicosapentaenoate (21:5n3) 0.0016

Glycogen Metabolism maltopentaose 0.0018

Pyrimidine Metabolism, Thymine containing thymine 0.0018

Pantothenate and CoA Metabolism 3'-dephosphocoenzyme A 0.0023

Phosphatidylethanolamine (PE) 1-linoleoyl-2-arachidonoyl-GPE (18:2/20:4)* 0.0026

Glutamate Metabolism glutamate, gamma-methyl ester 0.0029

Long Chain Fatty Acid palmitate (16:0) 0.0029

Phosphatidylcholine (PC) 1,2-dilinoleoyl-GPC (18:2/18:2) 0.0031

Methionine, Cysteine, SAM and Taurine Metabolism N-formylmethionine 0.0033

Lysophospholipid 1-arachidonoyl-GPI (20:4)* 0.0033

Lysine Metabolism N-trimethyl 5-aminovalerate 0.0034

Phosphatidylcholine (PC) 1-linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6)* 0.0035

Ceramides N-(2-hydroxypalmitoyl)-sphingosine (d18:1/16:0(2OH)) 0.0035

Endocannabinoid N-oleoyltaurine 0.0036

Lysophospholipid 1-palmitoyl-GPE (16:0) 0.0036

Fatty Acid Metabolism (also BCAA Metabolism) methylmalonate (MMA) 0.0039

Pantothenate and CoA Metabolism pantetheine 0.0039

Secondary Bile Acid Metabolism taurolithocholate 0.0044

Long Chain Fatty Acid stearate (18:0) 0.0045

Glycogen Metabolism maltohexaose 0.0054

Folate Metabolism 7,8-dihydrofolate 0.0054

Lysophospholipid 1-arachidonoyl-GPE (20:4n6)* 0.0057

Long Chain Fatty Acid oleate/vaccenate (18:1) 0.0058

Pentose Metabolism ribulose/xylulose 0.0061

Glycogen Metabolism maltotetraose 0.0066

Phosphatidylethanolamine (PE) 1-oleoyl-2-linoleoyl-GPE (18:1/18:2)* 0.0066

Glycolysis, Gluconeogenesis, and Pyruvate Metabolism glucose 0.0067

Glutathione Metabolism cysteinylglycine 0.0070

Polyunsaturated Fatty Acid (n3 and n6) dihomo-linolenate (20:3n3 or n6) 0.0071

Fructose, Mannose and Galactose Metabolism mannitol/sorbitol 0.0073

Fatty Acid, Monohydroxy 3-hydroxylaurate 0.0079

Phosphatidylserine (PS) 1-stearoyl-2-oleoyl-GPS (18:0/18:1) 0.0101

Vitamin B6 Metabolism pyridoxamine 0.0101
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CHAPTER 4: CERAMIDE SYNTHASE 6 CONTROLS MOUSE RESPONSE TO HIGH-

FAT DIET: METABOLOMICS STUDY 

Introduction 

Ceramides are bioactive lipids that play important roles in cell signaling and regulation of 

cellular processes [80, 82, 116, 273, 281-283]. Additionally, their role in the initiation and 

progression of several diseases including Alzheimer’s disease, type 2 diabetes, and obesity have 

been recognized [83, 109, 136, 169, 177, 284]. Ceramides are formed from a sphingoid base and 

Acyl-CoA by CerS, of which there are 6 isoforms having unique specificities with regard to the 

acyl group chain length that is attached to the sphingoid base. CerS5 and CerS6 produce C14- and 

C16-Cer and exhibit distinct tissue distribution in both mice and humans [77, 99, 122]. C16-Cer 

has gained attention from researchers as an important cellular lipid due to its roles in cellular 

processes including apoptosis and response to cellular stressors. Recent evidence suggests that it 

plays a role in inflammatory pathways as well (reviewed in [79]). Ceramides represent a hub of 

sphingolipid metabolism: they can be converted to sphingomyelins and hexosyl-ceramides by the 

attachment of a phosphocholine or sugar headgroup, respectively, as well as generated from 

complex sphingolipids by the action of SMase and glycohydrolases. Because of their diverse 

functions in cellular signaling, production of ceramides and their derivatives are highly regulated 

[80, 82, 99, 129].  

Alterations in ceramide metabolism are thought to be closely connected to the 

development of type 2 diabetes and obesity. Several studies have suggested that sphingolipids act 

as metabolites promoting obesity, IR and inflammation [173] and changes in the lipid profiles of 
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mice fed a HFD have been documented [136, 169, 172-174]. Additionally, ceramide and its 

metabolites are now considered to be important in the development of IR, as well as in obesity-

induced alterations to cellular metabolism, thus contributing to onset of metabolic disease [175]. 

Specifically, human studies have found that CerS6 expression positively correlated with BMI, 

body fat content and hyperglycemia  [169]. Moreover, ceramide levels are often found to be 

elevated in skeletal muscle and plasma, among other tissues, in obese humans [109, 170, 171].  

There are few animal studies examining the relationship between ceramide metabolism 

and the development of obesity and diabetes. When CerS5 KO mice were fed a HFD, there were 

changes in energy homeostasis and insulin sensitivity [173]. The KO mice showed a reduction of 

C16-Cer and of sphingolipids derived from it, without alterations in other ceramide species. 

CerS6 which also generates C16-Cer was unable to compensate for the loss of CerS5. In a 

different approach involving the whole-body and tissue-specific CerS6 knockout models, 

investigators found reduced C16-Cer levels in white and brown adipose tissues and liver in KO 

compared to WT mice after animals were challenged with a high fat diet [169]. CerS6 KO mice 

were also protected from DIO which the authors suggested could be due to increased energy 

expenditure and lipid utilization in BAT and liver of the KO mice. However, this hypothesis was 

not investigated in detail.  

Our previous studies in cultured cells have demonstrated that CerS6 mediates cellular 

response to metabolic stress [12, 285, 286] and we hypothesized that this enzyme will also 

mediate metabolic stress response in the whole animal. We further proposed that animals 

deficient in CerS6 will have different response to metabolic stress induced by HFD and will be 

protected from weight gain. We expected to see significant reductions of CerS6-produced 
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sphingolipids in the plasma of mice fed either a control or HFD and this is expected to confer a 

protective effect in terms of weight gain and body composition.  

Materials and Methods 

Animals and husbandry 

All animal experiments were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the North Carolina Research Campus (NCRC). CerS6 KO mice were 

generated in Dr. Ogretmen’s lab and were backcrossed for at least 11 generations to 

C57BL/6NHsd mice from Envigo (Indianapolis, IN). Absence of CerS6 protein was confirmed 

through western blot protein analysis (Fig S4.1). Male CerS6+/- mice were bred to obtain CerS6 

KO and CerS6 WT littermates that were randomized to dietary groups at weaning. Mice were 

group housed in microisolator cages under standard conditions (12h light: dark, temperature- and 

humidity-controlled conditions), and received ad lib access to water and one of two purified 

synthetic diets purchased from Envigo. The protein sources (casein and L-cystine) were 

consistent across diets, as were sources of carbohydrate (corn starch, sucrose, maltodextrin) and 

fat (soybean oil). The additional fat in the high fat (HF) diet came from lard (See Table S4.1 for 

diet composition). Mice were placed on respective diets at weaning and maintained on the diets 

for 16 weeks, with body weight recorded weekly. After 14 weeks on the diet, mice underwent 

metabolic phenotyping which included MRI, followed by 48 hours in calorimetry cages. Data 

were normalized to lean body mass. At 16 weeks on the diet, all mice were fasted for 4 hours and 

body composition was assessed prior to euthanasia. 

Calorimetry cages measurements 

  Energy expenditure, heat production, locomotor activity, food and water intake were 

assessed by the NORC Animal Metabolism Phenotyping Core using indirectly calorimetry cages 

(TSE systems).  The respiratory exchange ratio (RER) was calculated as the ratio of CO2 
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production to O2 consumption (VCO2/VO2). The light cycle began at 7:00am and ended at 

7:00pm in the climate-controlled facility.  

Body composition 

Body composition (lean and fat mass) was assessed before mice were placed on diet and 

before necropsy using the EchoMRI-130 Body Composition Analyzer. 

Western Blot analysis 

Fragments of snap-frozen liver tissue (~30mg) was homogenized using Dounce 

homogenizer in 750µl RIPA buffer containing protease and phosphatase inhibitor cocktail, 

incubated on ice for 30 minutes, sonicated and centrifuged at (20,000 x g, 5 min, 4°C). The 

supernatant was stored at -80°C. 5X dissociation buffer was added to tissue lysates (1:4 v/v) and 

incubated at room temperature for 30 minutes to allow proteins to dissociate and denature. 

Aliquots of 20 µg of total protein were subjected to SDS-PAGE followed by immunoblot with 

corresponding antibodies. All antibodies were diluted in 5% BSA blocking buffer. Membranes 

were washed 4 times with 2% TWEEN-20 in TBS. Blots were developed with PicoWest Super 

Signal Chemiluminescent substrate and analyzed on the Odyssey Fc infrared scanner from LI-

COR.  

HPLC-MS/MS analysis of sphingolipids 

75µL aliquots of plasma was immediately frozen and stored at -80 C until analysis. 

Sphingolipid levels were measured by HPLC-MS/MS the MUSC Lipidomics Shared Resource 

facility as previously described [252].  

Gene expression 

mRNA from snap frozen liver samples was isolated using the Maxwell LEV simplyRNA 

tissue kit from Promega (AS1280). cDNA synthesis was performed using Applied Biosystems 

High Capacity Reverse transcriptase kit with random primers mix from 1 µg of total RNA for a 
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total reaction size of 20uL. Samples were placed in thermocycler with heated lid (95°C) and 

incubated at 25°C for 10 minutes, 37°C for 120 minutes, 85°C for 5 minutes and held at 4°C. 

cDNA was diluted with nuclease free water (1:5) and a pooled standard was created. 3 samples 

were selected from each group based on highest quality RNA (concentration >100ng/µl, 

260:280~2, and 260:230~2). Expression levels of sphingolipid biosynthesis genes and β-actin 

were evaluated using SYBR Green Dye (SsoAdvanced Universal SYBR Green Super Mix, Bio-

Rad) in an 8 µL reaction with 10uM enzyme-specific primers (Table S4.2) on the Roche 

LightCycler 480 II. All samples were run in triplicate and normalized to β-actin before being 

analyzed using the ΔΔCT method. 

Plasma cytokines  

Plasma cytokines (IFNγ, IL-1β, IL-6, IL-10, IL-17A, and TNFα) were measured using 

the Bio-Plex Pro Mouse Cytokine TH17 Panel A 6-Plex (M60000007NY). Plasma was diluted 

and run in duplicate as outlined in manufacturer’s protocol. MagPix Luminex was used to 

measure and Bio-Plex MP software was used to assess quality. A pooled plasma sample was run 

on all plates as an internal control.  

Histology 

Freshly isolated liver, kidney, lung, heart, white adipose tissue, brown adipose tissue, 

testes/ovaries, and brain were fixed in 10% buffered formalin were embedded in paraffin blocks 

and 5 m sections from the blocks were placed on slides, deparaffinized, re-hydrated and stained 

with hematoxylin and eosin according to standard protocol. Images were acquired using Keyence 

BZ-X710 All-in-one fluorescence microscope at 2X, 10X, and 20X magnification. 

Metabolomic analysis 

Untargeted metabolomic analysis was performed by the commercial service provider 

Metabolon® (Durham, NC).  Approximately 100mg of snap-frozen liver and 100µL of plasma 
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were subjected to extraction with methanol and divided into aliquots for further analysis by 

ultrahigh performance liquid chromatography/mass spectrometry (UHPLC/MS). The global 

biochemical profiling consisted of four unique arms covering identification of both hydrophilic 

and hydrophobic compounds under both positive and negative ionization conditions [253]. 

Metabolites were identified by automated comparison of the ion features in the samples to a 

reference library of chemical standards characteristics which included retention time, m/z 

(mass/charge) ratio, predominant adducts and in-source fragmentation and associated spectra.  

Statistical analysis 

For statistical analysis of differences between two groups Student’s t-test was performed 

using GraphPad software. For the statistical analysis of differences between three or more 

groups, one-way ANOVA was used with Sidak’s multiple comparisons test to determine 

differences between specific groups. Results were determined to be statistically significantly 

different at p<0.05. Metabolomic data were analyzed using Qlucore Omics Explorer v.3.4 

software (Qlucore, Lund, Sweden). Calorimetry data over 24 hours were analyzed using multiple 

t-tests, one per row, representing differences between 2 groups for each 30-minute increment.  

Results 

CerS6 KO mice gained less weight and fat mass and were protected from lipid droplet 

accumulation in liver. 

In order to assess metabolic and phenotypic changes due to the lack of CerS6 in mice fed 

a high fat diet, WT and CerS6 KO mice were randomized to either the control or high fat diet 

upon weaning and maintained on their respective diets for 16 weeks. Body weight was assessed 

weekly and body composition was measured before the mice were placed on diet and at the end 

of dietary intervention. CerS6 KO mice on both the control (Ctrl) and HF diets gained less 

weight over the duration of the intervention, with a clear separation between WT and CerS6 KO 
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mice appearing sooner (after three weeks) on the high fat diet than on the control diet (after nine 

weeks)  (Fig 4.1A).  

 
 

Figure 4.1 CerS6 KO mice were protected from diet-induced weight gain and fat 

accumulation. Data are shown as mean + SEM, n=6-8. Solid bars, control diet; striped bars, high-fat 

diet. WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001 

determined by Student’s t-test between genotypes and diets. Differences in weekly body weight are 

denoted with * between WT and KO for each diet 

 

Additionally, WT mice on the HFD gained significantly more weight than the CerS6 KO 

mice on HFD (Fig 4.1B). CerS6 KO mice on the HFD also gained more weight than the KO 

mice on the control diet, indicating protection from diet-induced weight gain but not complete 

prevention.  The protection from diet-induced weight gain also manifested in body composition 

(Fig 4.1C). CerS6 KO mice on the Ctrl diet had significantly lower percent fat mass at the end of 

the dietary intervention compared to WT on Ctrl diet and compared to CerS6 KO mice on a HF 

diet (Fig. 4.1C). CerS6 KO mice also demonstrated significantly higher percentage of lean mass 

before being placed on the HFD as compared to WT mice (Fig S4.2), however this difference did 

not persist. After dietary intervention, the KO-Ctrl group had significantly higher percentage of 

lean body mass as compared to WT controls and the KO-HFD group (Fig S4.2) indicating that 

growth was not restricted. Additionally, we found that the HFD caused significant accumulation 
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of lipid droplets in the livers of WT mice, but the CerS6 KO mice demonstrated no such effect 

(Fig 4.2).  

 
 

Figure 4.2 CerS6 KO prevented accumulation of hepatic lipid droplets 

 

CerS6 KO mice were protected from lipid droplet accumulation in the liver, both on the Ctrl and 

on HF diet.  

CerS6 KO mice compared to WT show difference in nutrients utilization as energy source on 

control diet and consume less food when on the high fat diet.  

After 14 weeks on respective diets, food and water intake, physical activity and RER 

were evaluated using calorimetry cages which could provide relevant data to explain the 

differences in body weight gain between WT and CerS6 KO mice. Over the 24-hour period, the 

groups did not show significant differences in the distance travelled in the X- and Y- planes (Fig 

4.3A), nor of the activity in the Z-plane (jumping) (Fig 4.3B), pointing to similar physical 

activity between the groups.  

Further, we did not observe differences in food intake by WT mice on either diet, or by 

WT and CerS6 KO mice on the Ctrl diet (Fig 4.3C). However, CerS6 KO mice consumed a 

significantly lower amount of food per day on HFD. This resulted in higher caloric intake by WT 

mice on HFD than either WT or KO mice on Ctrl diets, and in the lowest caloric intake by CerS6 
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KO mice on HFD, than any of the other groups (Fig 4.3D). Mice on the HFD oxidized fat for 

energy production (RER ~0.7) regardless of genotype. However, on control diet, KO mice 

showed a preference for oxidizing glucose (RER ~1.0) while the WT mice utilized a 

combination of glucose, fat and protein (RER ~0.8-0.9) for energy production (Fig 4.3E).  

Dietary fat levels did not affect plasma cytokines in WT or CerS6 KO mice. 

Ceramides have been linked to cytokine signaling both as a signal to increase cytokine 

production [11, 287] and as a response to increases in cytokine levels [288].  So, we assessed 

plasma cytokines (IFNγ, IL-1β, IL-6, IL-10, IL-17A, and TNFα) and found that high fat diet 

increased levels of IL-6 and IL-17A in WT mice, but those changes did not reach statistical 

significance. In CerS6 KO mice, HFD had the opposite effect on IL-6 and IL-17A with a trend to 

decrease when on high fat diet (Fig S4.3). Overall, there was a trend for decreased plasma 

cytokine levels in CerS6 KO mice regardless of diet.  

 
Figure 4.3 CerS6 KO mice differed from WT mice in food consumption and preferred 

substrate for energy production. Data are shown as mean + SEM, n=6-8. Solid bars, control diet; 

striped bars, high-fat diet. WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; ***, 

p<0.001; ****, p<0.0001 determined by Student’s t-test between genotypes and diets. RER (Panel E) 

analyzed with multiple t-tests over 24 hour period  

* denotes significant difference 

KO Ctrl v KO HF 

# denotes significant difference 

WT Ctrl v KO Ctrl 
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Plasma sphingolipids respond to both dietary fat and to CerS6 status 

To evaluate the systemic effects of CerS6 and HF diet, we measured plasma levels of 

ceramides and derived sphingolipids, SM and HexCer. CerS6 KO mice showed significantly 

lower C14- and C16-Cer and SM in plasma than WT mice (Fig 4.4). Both C14- and C16-Cer, along 

with C14- and C16-SM were significantly elevated on HFD in both WT mice and CerS6 KO mice, 

compared to control diet groups. However, in the KO mice, C14- and C16- Cer and SM levels on 

HFD were still similar to or below the WT control diet levels (Fig 4.4). The total plasma Cer and 

SM levels were significantly lower in the KO mice, but responded to HFD in both genotypes 

with KO mice exhibited levels on the HFD comparable to WT mice consuming the Ctrl diet.  

 

Figure 4.4 CerS6 KO significantly lowers plasma levels of C14 and C16 sphingolipids but 

cannot overcome effect of HFD. Data are shown as mean + SEM, n=5. Solid bars, control diet; 

striped bars, high-fat diet. WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; ***, 

p<0.001; ****, p<0.0001 determined by Student’s t-test between genotypes and diets 
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Other plasma sphingolipids, which are not generated by CerS6, were also affected by 

CerS6 knockout. Specifically, on the control diet, C18-, C20-, C22- and C22:1-Cer were 

significantly lower in plasma of CerS6 KO mice than WT mice, while C24- and C26-Cer showed 

similar trend but did not reach significance (Fig 4.5).  

 

Figure 4.5 CerS6 KO mice demonstrate lower levels of several ceramide species in plasma 

on control diet. Data are shown as mean + SEM, n=5. Solid bars, control diet; striped bars, high-fat 

diet. WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001 

determined by Student’s t-test between genotypes and diets 

 

Interestingly, HFD elevated all of the plasma ceramides listed above in CerS6 KO 

animals, while plasma C18- and C20-Cer were not elevated in the WT mice on HFD. Plasma Sph 

did not differ due to genotype but was significantly increased by the HFD, whereas dihydro-Sph 

was significantly elevated due to HFD consumption in CerS6 KO mice only (Fig 4.5). While 

non-CerS6-produced ceramide species tended to be lower in CerS6 KO compared to WT plasma 

on control and in some cases on HFD, the corresponding SM species were not different between 
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genotypes on control diet, and elevated similarly in plasma of WT and CerS6 KO mice when fed 

a HFD (Fig 4.6).  

 

Figure 4.6 CerS6 KO does not protect from HFD-induced increase in plasma SM species. 
Data are shown as mean + SEM, n=5. Solid bars, control diet; striped bars, high-fat diet. WT shown in 

black and KO shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001 determined by 

Student’s t-test between genotypes and diets 

 

Contrary to SM, plasma HexCer were significantly lower in CerS6 KO mice than in WT 

mice on HFD, across all of the species measured, resulting in significantly lower Total HexCer 

pool (Fig 4.7). 

 
Figure 4.7 CerS6 KO decreased plasma hexosyl-ceramide levels on HF diet. Data are shown 

as mean + SEM, n=5. Solid bars, control diet; striped bars, high-fat diet. WT shown in black and KO 

shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001 determined by Student’s t-test 

between genotypes and diets  
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CerS6 KO significantly increased mRNA levels of sphingolipid genes in the liver but HFD had 

no effect on gene expression 

In plasma, complex lipids are transported and distributed by lipoproteins [289] and 

lipoproteins originate in the intestine and liver [290] So, we evaluated hepatic expression of 

genes involved in sphingolipid metabolism. CerS6 KO mice demonstrated significant elevation 

(2-6-fold) of several sphingolipid genes, including Sptlc1, the first and rate-limiting enzyme in 

de novo sphingolipid biosynthesis pathway, Sgms1 and 2, involved in sphingomyelin synthesis, 

Smpd1, acid sphingomyelinase, Ugcg, ceramide glucosyltransferase and Asah2, neutral 

ceramidase (Fig 4.8). However, no effect of HFD on these genes was seen in either genotype. 

Similarly, no significant effects of HFD on the expression of five CerS isoforms was found (Fig 

S4.4a), with the exception of lower CerS2 mRNA levels on HFD in WT mice.  Interestingly, 

even in the absence of changes in mRNA levels, HFD resulted in a noticeable increase of CerS6 

protein expression in WT mice (Fig S4.4B), in line with elevated C16-sphingolipid species.   
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Figure 4.8 Knocking out CerS6 increased hepatic gene expression of several other genes 

involved in sphingolipid biosynthesis. Data are shown as mean + SEM, n=3. Solid bars, control diet; 

striped bars, high-fat diet. WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; ***, 

p<0.001; ****, p<0.0001 determined by Student’s t-test between genotypes and diets 

 

Both liver and plasma metabolomes respond to diet and CerS6 knockout  

  To better understand the metabolic effects of HFD and the role of CerS6 in mediating 

these effects we performed untargeted metabolomic analysis of liver and plasma as liver is the 

central player in nutrients metabolism and plasma connects metabolites systemically. Statistical 

comparisons of the measured metabolites using principal components analysis showed clear 

separation of both liver (Fig 4.9A) and plasma (Fig 4.9B) metabotypes by genotype and by diet.  
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Figure 4.9 Principal components analysis of liver (A) and plasma (B) metabolites 

demonstrates distinct separation between both genotype and diet. 

 

Additionally, changes of metabolites in plasma in response to genotype were not directly 

reflected by changes in liver. Almost twice as many significantly changed metabolites were  

found in CerS6 KO versus WT mice on HFD, as compared to control diet. In plasma, the number 

of changes in the KO mice on the HFD were only 20% higher than on control diet (Table S4.3).  

At the same time numbers of changed metabolites in response to HFD were 40% and 45% higher 

for CerS6 KO mice compared to WT in liver and plasma, correspondingly (Table S4.4).  Heat 

Map analysis of metabolites showing differences of more than 50% with statistical significance 

p<0.05 confirms separation of the groups both by diet and genotype, as well as different 

separation patterns between liver and plasma (Fig S4.5a). 

All C16- acyl-chain-containing sphingolipids are lower in CerS6 KO mice, but only plasma C16-

ceramide was reduced 20-fold. 

Untargeted metabolomic analysis demonstrated significantly lower levels of 

sphingolipids with C16 acyl chain in KO versus WT mice across all classes: Cer, HexCer, and 

SM, both in liver and plasma (Fig S4.5b). The differences between genotypes were similar in 

liver and plasma, except for N-palmitoyl-sphingosine (d18:1/16), which was reduced in KO mice 

by ~95% in plasma on both diets, and only by 30 and 70 % in liver on control and HF diets 

respectively. Sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0), was reduced by 52 and 38% 
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(control and HF diets, respectively) in plasma, but showed no difference between KO and WT 

mice in liver on any diet (Fig S4.5b). Interestingly, multiple Cer species with C18, C22, C24, and 

C24:1 acyl-chains were elevated both on Ctrl and on HF diets in the liver of KO mice, but plasma 

levels of these species were either not changed or even reduced on both diets in KO mice. 

However, liver levels of Sph were slightly increased (30%) in KO versus WT mice on Ctrl diet, 

with no differences on HF diet, while plasma Sph level was elevated 2.2 times on Ctrl diet with 

no differences on HF diet (Fig S4.6)  

CerS6 KO showed differential response of phospholipids and glycerolipids in liver and plasma 

on both diets 

In addition to changes in sphingolipids, knocking out CerS6 also affected many other 

lipid pathways. Multiple free fatty acids as well as acyl-carnitines and acyl-cholines were 

elevated in KO versus WT livers on Ctrl diet, with a few of them showing higher levels in KO 

mice on the HF diet (Fig S4.7A). In plasma, fewer free fatty acids as well as acyl-carnitines and 

acyl-cholines were elevated and many were lower in KO than in WT mice (Fig S4.7B) while HF 

diet resulted in most of them becoming significantly lower in KO versus WT, with only 

dicarboxylic fatty acids and docosapentaenoate remaining significantly higher in KO mice.   

Levels of phospholipids did not differ significantly in livers of KO and WT mice on the 

control diet but were elevated in KO versus WT mice on HFD (Fig S4.8a). Plasma phospholipids 

demonstrated a different effect, however. Lower levels of phosphatidylcholine in KO compared 

to WT animals on control diet was almost completely abrogated on the HF diet (Fig S4.8b). On 

the other hand, phosphatidylethanolamine levels, which did not differ between KO and WT mice 

on control diet, were lower in KO versus WT mice on the high fat diet and phosphatidylinositol 

levels increased in KO versus WT animals. 
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Liver glycerolipids were slightly elevated in KO vs WT livers on the control diet (without 

reaching statistical significance) but became significantly elevated (by 40-80%) on HFD (Fig 

S4.9). However, in plasma, glycerolipids were significantly lower in KO mice on both diets. 

Interestingly, eicosanoids showed exactly opposite pattern of changes in liver vs plasma. On 

HFD, CerS6 KO mice had significantly lower levels than WT animals, but eicosanoids were 

slightly elevated in KO vs WT animals on control diet. At the same time, no significant 

differences on any diet were seen in plasma, with the exception of 12-hydroxyheptadecanoic 

acid, which was elevated ~2.8 fold.   

CerS6 KO mice show differential response of carbohydrate metabolites to diet in liver and 

plasma 

Metabolomic data additionally show significant changes in carbohydrate and amino acid 

metabolism induced by knocking out CerS6. Almost all glycolytic metabolites, ribose-1-

phosphate, and erythrose-4-phosphate were lower on KO mice than in the WT animals on 

control diet, with differences disappearing on the HF diet (Fig S4.10a).  At the same time 

pentose pathway metabolites, hexoses and oligosaccharides produced by glycogen degradation, 

were significantly higher in KO animals than in WT on the HF diet but not on the control diet 

(Fig S4.10A). In plasma, glycolytic metabolites were higher in KO versus WT mice on both diets 

while pentose metabolism intermediates were higher on Ctrl diet only. Hexose intermediates 

mannitol and mannose were lower in KO compared to WT animals on Ctrl diet but either higher 

or similar to WT on the HF diet (Fig S4.10B). TCA cycle metabolites showed no difference 

between genotypes on control diet but were significantly lower in KO livers on the HF diet (Fig 

S4.10C). In plasma, however, TCA cycle metabolites showed no difference or were higher in 

KO animals than in WT on both diets (Fig S4.10D).   
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CerS6 KO significantly affected amino acid metabolism response to diet in liver and plasma but 

in a different manner 

 Levels of all amino acids in KO mouse livers did not differ from WT on the Ctrl diet but 

were significantly elevated in KO versus WT livers on the HFD (Fig S4.11). Interestingly, levels 

of betaine, methylhistamine, and creatine were higher in KO livers on control diet but not HFD, 

whereas S-methylmethionine and homocysteine were higher in KO mice on both diets. Reduced 

glutathione levels were lower in KO livers regardless of diet and cysteine-glutathione disulfide 

was higher in KO animals on both diets. However, oxidized glutathione showed no difference 

between KO and WT mice on Ctrl diet but was significantly higher in KO mice than in WT mice 

on the HF diet. Additionally, fatty acid degradation products of amino acids were higher in KO 

livers versus WT on the control diet but did not differ from WT on the HFD (Fig S4.11). Of note, 

on control diet urea cycle metabolites were similar in KO and WT livers, but on the HF diet they 

were significantly higher in KO versus WT animals.  In plasma, most amino acids were not 

different between KO and WT animals on either diet (Fig S4.12, tables show only metabolites 

that are different between KO and WT on one or both diets), although glycine, methionine and 

aromatic amino acids were elevated in KO mice at least on one of the diets. Products of 

metabolism of most amino acids were elevated in KO versus WT plasma on both diets, however, 

histidine metabolites, isoleucine and valine, as well as methylated cysteine and cysteine 

sulfoxide, as well as sarcosine and dimethylglycine were lower in KO than in WT animals on 

HFD (Fig S4.12). Similarly, plasma urea cycle metabolites and polyamine metabolites were 

lower in KO mice on the HFD. 

Bile acids are dramatically elevated in CerS6 KO mice liver and plasma but high fat diet scales 

down these differences 

 Striking differences between KO and WT livers were observed in bile acids metabolism. 

Four conjugated primary bile acids were increased ~20-70 times in KO mice compared to WT 
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mice on the control diet but differences of 2 to 3.4-fold were observed for just a few of them on 

the HFD diet (Fig S4.13A). Secondary bile acids were also dramatically higher in KO than in 

WT mice on the control diet, with taurolitho-, taurourso- and taurohyodeoxycholate reaching 10 

– 86-fold increase in levels of the WT animals on the control diet, but they were only 2-4 times 

higher on the HFD. Plasma primary and secondary bile acids were also dramatically higher in 

KO versus WT samples on the control diet with fold-difference ranging from 4 to 124 for 

primary and from 2.5 to 52 for secondary bile acids (Fig S4.13B). On the HFD, the fold-

difference between KO and WT mice was slightly lower, from 1.5- to 24-fold for primary and 

from 4- to 8-fold for secondary plasma bile acids.      

Discussion 

Our study confirms the initial hypothesis and shows that CerS6 KO mice are protected 

from diet-induced weight gain when fed a high fat diet (Fig 4.1A). Additionally, CerS6 KO mice 

on the control diet demonstrate no change in percent fat mass over the 16-week dietary 

intervention. We sought to examine why CerS6 KO mice remain leaner through indirect 

calorimetry analysis and found that none of the groups were more active than the others. 

Interestingly, while both genotypes consumed similar amounts of food on a control diet, on HFD 

the CerS6 KO mice consumed less chow than their WT littermates (Fig 4.3C). Previous studies 

have reported that mice over-eat when given ad libitum access to HFD  [291] and we found that 

WT mice did consume significantly more food and calories than their CerS6 KO littermates. 

Caloric intake of CerS6 KO mice was not different from the WT mice on control diet (Fig 4.3D) 

despite the fact that CerS6 KO mice demonstrated significantly lower weight gain (Fig 4.1B). 

This effect of genotype-diet interaction on food consumption and homeostatic regulation needs 

to be further investigated, along with assessments of these measures at different timepoints and 

longer exposures to provide a clearer understanding of genotype and diet effects. 
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Measurements of RER demonstrate that consumption of HFD led to utilization of fat as a 

source of energy both by WT and CerS6 KO mice (Fig 4.3E). However, on the control diet 

which was significantly lower in fat content, the WT mice oxidized a mix of protein, fat and 

carbohydrates for energy, as expected [292]. The CerS6 KO mice preferentially used glucose for 

energy as can be determined from RER values near 1.0 during their waking hours. It is not quite 

clear why or how the absence of CerS6 and lower C16- sphingolipid levels switched mouse 

tissues to using glucose for active part of the day cycle on control diet. Our metabolomic data 

indicate that while liver short-, medium- and long-chain fatty acids were mostly higher in the KO 

animals, the plasma levels of medium-, long- and long-chain monounsaturated fatty acids were 

lower in these mice (Fig S4.7). Thus, lower availability of free fatty acids from blood could give 

a partial explanation of the metabolic switch. However, this difference was not dramatic, from 50 

to 25% and may not be the only factor in different nutrient utilization for energy production. The 

KO mice also remained leaner for the duration of the study, indicating that they may oxidize 

glucose for energy because they do not have sufficient fat stores to pull from. Of note, CerS6 has 

been implicated in the fatty acid storage in the lipid droplets and CerS6 knockout was shown to 

prevent lipid droplets formation [165, 293]. It is also possible that overall changed lipid 

metabolism is the driving force behind the use of carbohydrates for energy.  

We examined several tissues for histological characteristics and found that CerS6 KO 

prevented the accumulation of lipid droplets in the livers of mice fed HFD (Fig 4.2). Non-

alcoholic fatty liver disease (NAFLD) is the result of dyslipidemia and lipotoxicity due to insulin 

resistance, oxidative stress, fibrosis and hepatocellular death in the liver [294] and is strongly 

associated with obesity and type 2 diabetes [295, 296]. Published data suggest that C24:0 and C16 

ceramides are reciprocally regulated and contribute to insulin resistance and non-alcoholic 
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steatohepatitis [296]. In cell culture studies, CerS6 overexpression in isolated primary 

hepatocytes resulted in significant accumulation of triglycerides, inhibition of insulin signaling, 

and altered mitochondrial function, all of which are classical characteristics of NAFLD [130].  In 

rats with NAFLD, inhibition of ceramide with myriocin reduced hepatic lipid accumulation and 

reduced markers of hepatic steatosis [297]. Ceramides may be especially relevant to the 

development of NAFLD due to their combinatorial proinflammatory and cytotoxic effects. 

Ceramides are also particularly relevant to NAFLD because the liver is a central site of ceramide 

production, making it prone to sphingolipotoxicity [298-300]. Our study provides further 

evidence that mice lacking CerS6 and demonstrating significantly lower levels of C16-Cer are 

protected from hepatic lipid droplet accumulation. 

We expected to see significantly decreased levels of cytokines in the plasma, in line with 

current literature suggesting that TNFα mediates some of its effects through increased production 

of ceramide [301] or that ceramides can lead to an increase in cytokine production [287]. 

Additionally, a separate study demonstrated an association between IL-6 and insulin resistance 

with a probable connection through ceramides [189]. However, our data show that CerS6 KO 

mice did not have changes in plasma cytokines, including IL-6 and TNFα (Fig S4.3). Despite the 

lack of significant differences in TNFα levels, a clear trend for reduced TNFα in CerS6 KO mice 

was noted.  

Our hypothesis predicted differential response to metabolic stress in CerS6KO mice, so 

as a first step, we performed targeted measurements of major sphingolipid classes in 

experimental groups. Our data demonstrate a strong and significant effect of CerS6 KO on the 

sphingolipids specifically produced by CerS6 (Fig 4.4), as expected. C14-Cer, C16-dhCer-, C16-

Cer and total Cer as well as corresponding sphingomyelins including total SM were significantly 
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lower in KO versus WT mice on both diets. Additionally, HFD significantly elevated these 

species compared to levels on control diet. Moreover, we also found that the effects of CerS6 KO 

extend beyond C14- and C16-ceramides (Fig 4.5). Interestingly, while CerS6 KO protected 

animals from C14-, C16- SM accumulation of HFD, no protection was seen for C18- through C22-

SM (Fig 4.6) suggesting that this effect of CerS6 does not extend to all sphingomyelin species. 

Elevation of SMs across all chain lengths may reflect a homeostatic mechanism that controls 

ceramide levels. Since HFD increases supply of free fatty acids it will increase the synthesis of 

sphingoid bases through the first and rate-limiting reaction catalyzed by SPT [302]. De novo 

synthetized spingoid base will be acylated by the over-supplied acyl-CoAs thus increasing levels 

of ceramide. However, since ceramides are signaling lipids and their elevation generally has 

apoptotic effect, to avoid cell death signaling, ceramides are converted to SMs by hepatocytes 

and further released into plasma. While CerS5 is also capable of producing C14 and C16 

ceramides, the dramatic lowering effect of knockout on plasma C14- and C16- species indicates 

that CerS6 is likely the primary source of these sphingolipids in the plasma. Additionally, it has 

been suggested that CerS5 functions more as a housekeeping gene to produce ceramides for 

membrane functions whereas CerS6 responds to stimuli [82]. Additionally, CerS6 KO mice were 

protected from accumulation of other ceramide species in plasma indicating that CerS6 has a role 

in regulation of the synthesis of other ceramides. It is now appreciated that CerS can 

heterodimerize with data indicating that CerS6 may interact with CerS2 and CerS5 [133]. This 

could be a possible mechanism behind the lower levels of other ceramide species as it is likely 

that the absence of CerS6 is affecting the expression and activity of other CerS.   

A similar effect was also seen for plasma HexCer species, CerS6 KO on HFD 

demonstrated lowered levels of nearly every species, not just those produced by CerS6 (Fig 4.7). 
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It is possible that CerS6 plays a significant part in nutrient stress by modulating HexCer levels. 

Metabolomics confirmed that CerS6 KO mice had significantly lower HexCer on HFD but fewer 

differences on the Ctrl diet. Furthermore, hepatic HexCer were significantly elevated due to 

HFD. Glucosyl-ceramides and glycosphingolipids have gained attention recently as possessing 

more than a structural role. Studies have found that inhibition of glycosphingolipids lessens 

measures of atherosclerosis in a rabbit model of the disease [303] and may work independently 

of ceramide to influence insulin signaling and thus insulin resistance [304]. Accumulation of 

glycosphingolipids and GlucCer has been reported in disease states including Gaucher disease 

which is often accompanied by IR [305].  

Gene expression was measured to better understand compensatory changes that may be 

occurring in CerS6 KO mice or due to high fat diet which could partially explain the altered 

sphingolipid levels. Knocking out CerS6 led to significant elevation in several genes involved in 

sphingolipid synthesis, including the rate-limiting step catalyzed by SPT and genes involved in 

modification of Cer to SM or GlucCer as well as ceramidase which is involved in the synthesis 

of Sph from Cer (Fig 4.8). Change of expression ranged from 2 to 8-fold for different genes in 

CerS6 KO mice. The increase in expression of several genes, both related to de novo synthesis 

and the salvage sphingolipid pathway indicates increased flux, possibly in an attempt to maintain 

proper ceramide levels. Interestingly, the mRNA levels of other CerS isoforms were largely 

unaltered by either CerS6 KO or dietary intervention (Fig S4.4A), except that CerS6 KO mice 

fed a HFD had significantly elevated expression of CerS2 in the liver compared to WT mice fed 

a HFD. CerS2 is the predominant CerS expressed in the liver which indicates it may be more 

sensitive to dietary intervention. It is also possible that changes in other CerS could be found in 

different tissues, depending on the specific tissue expression profile. CerS6 is expressed at low 
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levels in most tissues which could explain why we did not see a significant increase in liver 

expression when mice were fed a HFD. Importantly, we observed increase in the protein levels 

of CerS6 on HFD, indicating post-transcriptional regulation of the enzyme in response to HFD 

(Fig S4.4B).   

While several studies characterizing CerS using knockout mouse models have been 

published, our study presents metabolomic data for both liver and plasma to explain the unique 

characteristics of CerS6. Untargeted metabolomics approach allows discovery of less obvious 

metabolic connections between different pathways, which was the rationale for using it in our 

investigation. Principal component analysis of metabolomics data shows distinct separation 

between WT and CerS6 KO mice for liver with a closer alignment due to diet, whereas the 

plasma samples had a clear separation between both genotype and diet (Fig 4.9). Heat map 

analysis of the metabolites showing at least 50% change due to diet or genotype and the p-value 

<0.05, confirmed separation of liver and plasma samples by both diet and genotype (Fig S4.5). 

Meanwhile, both liver and plasma showed significantly lower C16-acyl chain containing 

sphingolipids showing good correlation with our targeted sphingolipid measurements. 

Interestingly, C16-Cer levels in liver showed reduction by 32-65% by the CerS6 KO, while in 

plasma reduction was by 94-95%, indicating that the source of this ceramide in plasma is mostly 

CerS6, not CerS5. At the same time C16-SM and C16-GlucCer showed similar reductions in both 

tissues. Overall, clear group separation demonstrates that the plasma metabolome could be used 

for selection of biomarkers or indicators of nutrient stress due to its sensitivity in response to a 

high fat diet.  

In addition to changes of sphingolipids, CerS6 KO also induced profound alterations in 

metabolite levels of other lipid classes. Increases in short and medium-chain fatty acids as well 
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as long-chain polyunsaturated fatty acids, mono-hydroxy and dicarboxylic fatty acids were seen 

in KO livers on the control diet (Fig S4.7A). However, some of these fatty acids were reduced in 

KO livers on the HFD. No differences in long-chain saturated fatty acids were found in either 

tissue. Additionally, acyl-carnitines and acyl-cholines were elevated in KO livers on control but 

were mostly unchanged in HFD diet. In plasma, however, most of the fatty acids, conjugated or 

not, were reduced in the KO mice on both diets with stronger effects on high fat diet (Fig S4.7B). 

Acyl-carnitines, being intermediates in fatty acid oxidation, were found to be associated with 

insulin resistance and are studied for their role in lipotoxicity, along with ceramides (reviewed by 

Schooneman [306]). Their lower levels in CerS6 KO mice points to a potential protective 

mechanism that enables CerS6 KO mice to remain insulin sensitive and maintain a healthy 

weight. However, plasma acyl-carnitine levels do not always correlate with tissue levels and the 

use of acyl-carnitines as a biomarkers for risk of IR should be used with caution [307]. These 

data indicate that not all fatty acids are transported from liver to plasma even if they are 

increased in liver. 

Phospholipids also showed changes due to genotype and diet (Fig S4.8). On the control 

diet, mouse liver phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and 

phosphatidylglycerol were not different between KO and WT animals, while 

phosphatidylinositol was slightly reduced (by 27%). At the same time, on HFD, all of these 

phospholipids were elevated in KO livers (Fig S4.8A). Quite different effects were seen in 

plasma (Fig S4.8B). On control diet, phosphatidylcholines were significantly lower in KO 

plasma while phosphatidylethanolamines and phosphatidylinositols were unchanged. However, 

on the HFD, phosphatidylcholines were almost unchanged, but phosphatidylethanolamines were 

significantly reduced and phosphatidylinositols were significantly elevated. While elevation of 
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liver phosphatidylcholine, phosphatidylethanolamine, glycosyl-phosphatidylethanolamine, 

phosphatidylserine and phosphatidylglycerol on HFD could be explained by oversupply of 

dietary fatty acids, it is not clear at present, why phosphatidylcholines would be reduced in KO 

versus WT plasma with no changes in phosphatidylethanolamines and phosphatidylinositols on 

control diet. While no differences were seen between KO and WT plasma in 

phosphatidylcholines on the HFD, phosphatidylethanolamines were significantly reduced and 

phosphatidylinositols are significantly increased in KO versus WT plasma samples. It is possible 

that reduced phosphatidylethanolamine levels play protective role in reducing fat mass 

accumulation in KO mice, as abnormal phosphatidylethanolamine levels has been linked to 

several diseases (reviewed in [308, 309]). 

Hepatic glycerolipids were mostly elevated in KO versus WT on both control and HFD, 

excluding some C16 and C18-glycerolipids. Plasma glycerolipids, on the contrary, were 

significantly reduced in KO versus WT samples on both control and HFD. Interestingly, liver 

eicosanoids were mostly unchanged in KO mice livers on control diet (Fig S4.9A) but were 

significantly lower in KO versus WT livers on HFD. As for the plasma, no significant 

differences in eicosanoid levels were observed between genotypes on either diet (Fig S4.9B). 

Ceramides and eicosanoids are both known to function in signal transduction pathways and 

sphingolipids may regulate inflammatory response through eicosanoids as well as cytokines 

[310, 311]. CerS6 KO livers could be protected from increased inflammation by having lower 

eicosanoid levels and possibly decreased cytokine levels. 

Along with lipid metabolic pathways, which were affected by CerS6 KO and HFD, 

multiple metabolic pathways, which may not be directly linked to lipid metabolism were also 

significantly altered by genotype and diet. Reduction of glycolytic metabolites, pentose 
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phosphate pathway and pentose metabolites, with no changes in TCA cycle metabolites in KO 

versus WT livers on control diet (Fig S4.10 A,C) could be reflecting the preferential use of 

glucose for energy seen in the RER measurements in calorimetry cages. On the HFD, though, 

TCA cycle metabolites were lower in KO mice than in WT, but glucose, lactate, pentose and 

glycogen metabolites are significantly elevated in KO livers (Fig S4.10 A,C), reflecting the 

switch to oxidation of fatty acids by both KO and WT mice. Studies of HFD feeding in rats 

showed insulin resistance and decreased levels of TCA cycle intermediates in skeletal muscle 

[206], similar to our data in liver. At the same time on control diet, glycolytic and pentose 

metabolites were elevated in KO versus WT plasma together with TCA cycle intermediates 

succinate, fumarate, and malate (Fig S4.10 B, D). Upon HFD consumption, almost all of the 

glycolytic and TCA cycle metabolites were significantly elevated in the KO plasma compared to 

WT, again in agreement with the preferential fatty acid oxidation on the HFD.  

Multiple changes in amino acid metabolism are notable in KO mice and also in response 

to consumption of HFD. On the Ctrl diet, no differences in the levels of amino acids between KO 

and WT livers was found. Calorimetry data indicate that on this diet, KO mice preferentially 

oxidize glucose, while WT use a mix of fatty acids, glucose and amino acids, and higher levels 

of lysine, tyrosine, tryptophan, leucine/isoleucine/valine metabolites in KO versus WT mice on 

control diet (Fig S4.11) support calorimetry measurements. Furthermore, on the HFD levels of 

all amino acids and their metabolites were significantly increased in KO, compared to WT mice 

(Fig S4.11). While to some extent counter-intuitive, this further increase in amino acids may 

result from preferential use of fatty acids for energy, and channeling TCA cycle metabolites into 

production of amino acids (reflected in lower TCA cycle metabolites in KO vs WT mice on 

HFD). Alternatively, altered ceramide levels due to CerS6 KO could potentially be affecting 
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amino acid transport between peripheral tissues and plasma resulting in increased accumulation 

of several amino acids in the plasma (Fig S4.12). It has been demonstrated that ceramides 

downregulate the amino acid transport system in a rat skeletal muscle cell culture model, leading 

to decreased amino acid abundance in those cells which could affect protein synthesis [312]. In 

plasma, glycine, phenylalanine and tyrosine, as well as their metabolites and 

leucine/isoleucine/valine metabolites were elevated in KO mice on control diet (Fig S4.12), 

which does not mirror the liver profile. Moreover, urea cycle metabolites were slightly higher in 

KO mice on control diet and slightly lower on the HFD (Fig S4.12), which is opposite to the 

liver profile, which showed unchanged or slightly lower urea cycle metabolites in KO versus WT 

mice on Ctrl diet and significantly elevated metabolites on the HFD (Fig S4.11). These 

differences underscore the fact that metabolomic profiles in plasma do not precisely reflect liver 

amino acid metabolism but represent cumulative contributions from multiple tissues of the body.  

The biggest differences in the effects size for metabolites (30-120-fold) were found for 

bile acids, both primary and secondary (Fig S4.13), and in this case plasma profiles reflected the 

overall liver trends, but not necessarily for individual metabolites. Overall, both liver and plasma 

levels of KO mice were dramatically higher in KO than in WT livers on control diet with 

difference disappearing on the HFD. While higher levels of liver bile acids in KO mice could be 

excreted with bile, it is not clear what effects would 123-fold elevated plasma alpha-muricholate 

have on peripheral tissues. Of note, bile acids are important metabolic regulators acting through 

the PPARs and farnesoid receptors, which may be a part of the explanation of reduced fat 

accumulation by KO mice. 

Conclusion 

Several studies have demonstrated that reduction of C16-Cer levels protects against diet-

induced weight gain and promotes liver health. Recently, targeting CerS6 with antisense 
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oligonucleotides in ob/ob mice on HFD was shown to decrease C16-Cer and restore glucose 

sensitivity and plasma adiponectin levels [4]. Another model unrelated to CerS6 (heterozygous 

CerS2 knockout) was found to increase C16-Cer and showed impairment of glucose tolerance, 

plasma cholesterol, liver damage and other markers common to obesity [130]. Nevertheless, 

none of the studies have been able to provide mechanisms for such effects of CerS6 and C16-Cer.  

Our work confirmed our hypothesis regarding the link between CerS6, C16-Cer, and 

overall animal metabolism and has established that reducing C16-Cer by CerS6 knockout 

significantly changes nearly every metabolic pathway, irrespective of diet. It also demonstrated 

that the plasma metabolome rarely reflects changes observed in liver (and likely other tissues).  

This study also showed that not all metabolites are “created equal”: only CerS6-produced C16-

Cer can be transported to plasma, as can be seen from comparison of the C16-Cer levels in WT 

and KO mice. Thus, C16-Cer concentrations in KO livers (CerS5-produced) were only 65% and 

35% of the concentrations seen in WT liver on control and HFD respectively, however in the KO 

mice plasma C16-Cer levels were only 6% and 5%, of the WT plasma levels on Ctrl and HFD, 

respectively). This suggests that plasma C16-Cer may be a good indicator of CerS6 status. 

Additionally, our study indicated that both primary and secondary bile acids may mediate effects 

of C16-ceramide in metabolic response. 

It should be noted that current study has its limitations. The additional fat in the HFD 

comes from lard which is not typical of human consumption. Effect of different dietary fat 

composition (saturated versus polyunsaturated fatty acids, or combinations thereof, as well as 

acyl chains lengths of constituent fat) should be evaluated to give a better understanding of how 

CerS respond to different types of fat in the diets. Another feature of the HFD used in our 

experiments was 58% kcal derived from fat, which is higher than the standard Western diet 
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[313]. While such diets are commonly used to induce fat accumulation in animals, diets that 

more accurately reflect the standard Western diet (moderate fat, higher in fructose) will provide 

results more translatable to human physiology and disease states. The biggest limitation though, 

is that we still do not understand the mechanisms driving these metabolic changes. However, our 

metabolomics data provide directions for generation of novel hypotheses and future 

investigations. 
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Supplementary Materials 

 
 

Figure S4.1 Western Blot confirming expression of CerS6 protein in WT mice only  

 

 
 

Table S4.1 Diet composition including ingredients by weight and caloric content of control 

diet and high fat diet  

  

Diet Number (Teklad) TD.04194 TD.180093

Diet Name Control High Fat Diet

Caseine, Vitamin-Free 195.0 195.0

L-Cystine 3.0 3.0

Corn Starch 314.488 34.237

Sucrose 200.0 200.251

Maltodextrin 130.0 130.0

Soybean Oil 60.0 60.0

Lard 0.0 280.0

Cellulose 50.0 50.0

Mineral Mix (AIN-93G-MX (94046)) 35.0 35.0

TBHQ, antioxidant 0.012 0.012

Vitamin Mix (AIN-93-VX (94047)) 10.0 10.0

Choline Bitartrate 2.5 2.5

% kcal from protein 19.0 13.6

% kcal from carbohydrate 66.6 28.3

% kcal from fat 14.4 58.2

kcal/g 3.8 5.3

Ingredient (g/kg)
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Table S4.2 qPCR primer sequences 

 

Figure S4.2 CerS6 KO mice tended to have more lean body mass before dietary 

intervention and those placed on the Control diet remained leaner throughout study. Data 

are shown as mean + SEM, n=3-4. Solid bars, control diet; striped bars, high-fat diet. WT shown in black 

and KO shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001 determined by Student’s t-

test between genotypes and diets 

Category Gene  Sequence 

CerS 
isoforms 

CerS1 F GGAGCTACTGCGCTTACCTG 

R CCATGCCTGACCTCCAGT 

CerS2 F AGAAGTGGGAAACGGAGTAGC 

R TTCCCACCAGAAGTAGTCATACAA 

CerS3 F GGCGATTTACATTTTACTTGCTG 

R GGTCATATGCCCATGGTTTG 

CerS4 F GCTGTGCGAATTGTCTTTGA 

R AGTCTGCCGAAGCGTGAG 

CerS5 F CGGGGAAAGGTGTCTAAGGAT 

R GTTCATGCAGTTGGCACCATT 

CerS6 F GATTCATAGCCAAACCATGTGCC 

R AATGCTCCGAACATCCCAGTC 

Sphingolipid 
metabolism 

SPT (long chain base 
subunit 1) 

F ACGAGGCTCCAGCATACCAT 

R TCAGAACGCTCCTGCAACTTG 

SM Synthase 1 F TTGGCACGCTGTACCTGTATC 

R CAGTCTCCAAAGAGCTTCGGA 

SM Synthase 2 F GAGACAGCAAAACTTGAAGGTCA 

R CCCGTTGGATAAGGTCTTGGG 

Acid 
Sphingomyelinase (1) 

F TGGCTCTATGAAGCGATGGC 

R TTGAGAGAGATGAGGCGGAGAC 

Neutral 
Sphingomyelinase 

F ACACGACCCCCTTTCCTAATA 

R GGCGCTTCTCATAGGTGGTG 

Glucosyl-CerS F AGGAAGGATGTGCTAGATCAGG 

R TTTGCATGGCAACTTGAGTAGA 

Ceramidase F GCAAAGCGAACCTTCTCCAC 

R ACTGGTAACAAACAAGAGGGTGA 

Control 
β-actin F ATTGGCAATGAGCGGTTCC 

R GGTAGTTTCGTGGATGCCACA 
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Figure S4.3 Plasma cytokines not significantly altered due to diet or knockout. Data are 

shown as mean + SEM, n=3-4. Solid bars, control diet; striped bars, high-fat diet. WT shown in black and 

KO shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001 determined by Student’s t-test 

between genotypes and diets 

 

 

Figure S4.4 A) HFD decreased CerS2 mRNA in WT mice but had no biologically relevant 

effects on CerS mRNA levels in livers of either genotype. B) However, CerS6 protein was 

increased in WT livers by HFD. Data are shown as mean + SEM, n=3. Solid bars, control diet; striped 

bars, high-fat diet. WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; ****, 

p<0.0001 determined by Student’s t-test between genotypes and diets  
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Table S4.3 Number of metabolites with significantly different levels in CerS6 KO versus 

WT mice on HFD were ~2-fold and ~1.2-fold higher in liver and plasma, respectively 

 

 
 

Table S4.4 Number of metabolites changed by high fat diet compared to low fat is 40% 

higher in KO than in WT livers but 45% higher in WT plasma compared to KO 

  

HF CTRL HF CTRL

Total Biochemicals p<0.05 234 118 195 162

Biochemicals (/) 150/84 71/47 64/131 86/76

Total Biochemicals 0.05 <p <0.10 51 59 57 68

Biochemicals (/) 31/20 32/27 25/32 42/26

Statistically Significant Biochemicals Liver Plasma

KO/WT Changes

WT KO WT KO

Total Biochemicals p<0.05 206 289 288 189

Biochemicals (/) 125/81 150/139 146/142 66/123

Total Biochemicals 0.05 <p <0.10 70 67 49 64

Biochemicals (/) 38/32 37/30 24/25 13/51

Statistically Significant Biochemicals

HF/LF Changes

Liver Plasma
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Figure S4.5 Heat map analysis(A) confirms separation of metabotypes both by diet and by 

genotype in liver and plasma, with patterns of separation being different between plasma 

and tissue.  C16-sphigolipids are lower in KO animals on both diets (B) 

 

Figure S4.6 Differential effects of CerS6 KO on the non-C16-sphingolipids in liver (A) and 

plasma (B).  
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Figure S4.7 Differential effects of CerS6 KO on the free and conjugated fatty acids in liver 

(A) and plasma (B). 
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Figure S4.8 Differential effects of CerS6 KO on the phospholipids in liver (A) and plasma 

(B). 
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Figure S4.9 Differential effects of CerS6 KO on the glycerolipids in liver (A) and plasma 

(B). 
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Figure S4.10 Mice show differential response of carbohydrate metabolites in liver (A, C) 

and plasma (B, D). 
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Figure S4.11 CerS6 KO livers had significant diet-dependent changes in amino acid 

metabolism. 
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Figure S4.12 CerS6 KO plasma had significant diet-dependent changes in amino acid 

metabolism.  
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Figure S4.13 CerS6 KO mice had significant genotype- and diet-dependent alterations in 

bile acid metabolism in liver (A) and plasma (B).

A 

B 
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CHAPTER 5: FOLIC ACID SUPPLEMENTATION SHAPES PLASMA SPHINGOLIPID 

PROFILES OF MICE FED HIGH FAT DIET 

Introduction  

Ceramides are a class of bioactive lipids within the sphingolipid family. Ceramides can 

be synthesized de novo in the ER beginning with the condensation of palmitoyl-CoA and serine 

[95] and ending with the attachment of an acyl chain via Ceramide Synthase (CerS) enzymes. 

There are six isoforms of the CerS, each possessing a unique affinity for specific acyl chains 

used to synthesize ceramides [99]. CerS6 is expressed in low levels in most tissues and produces 

C14:0- and C16:0-ceramides [99]. Ceramides are considered a hub of sphingolipid metabolism 

because they can be further converted to other sphingolipid species including sphingomyelins 

and hexosyl-ceramides by the attachment of a phosphocholine or sugar headgroup, respectively 

[1]. While serving structural roles in the cell membranes, along with sphingomyelins and 

glycosyl-ceramides, ceramides also respond to many extracellular and intracellular stimuli 

including UV radiation, ionizing radiation, endotoxins, cytokines, and chemotherapeutic agents 

[12, 92, 144-149].  Similarly, HexCer have been implicated in cellular signaling [314] and are 

thought to contribute to the development of IR [315, 316] and atherosclerosis [317]. As it relates 

to nutrient stress, sphingolipids have been studied for their role in response to folate stress, 

synthetic retinoids, vitamin E metabolites, and choline and magnesium withdrawal [7-10, 12].  

Ceramides have been considered as potential biomarkers for several disease states. They 

have been individually assessed and linked to the outcomes and, based on select ceramide 

species levels, ceramide risk scores have been derived. A study investigating two large cohorts 
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found 11 distinct plasma ceramides and 1 plasma dihydroceramide that were predictive of major 

adverse cardiovascular events in patients with previous myocardial infarction [211]. Several 

groups have proposed to use a combined ceramide risk score for cardiovascular events based on 

the values of C16:0-Cer, C18:0-Cer, C24:1-Cer and C24:0-Cer [215-219]. However, these studies only 

showed associations to specified outcomes and provided little mechanistic understanding of how 

ceramides may contribute to development and progression of disease. While the link between 

diet and cardiovascular disease is well established, the understanding of how short- and long-

term dietary patterns affect ceramide levels and how that contributes to disease progression is 

missing. 

Our lab has previously established the role of ceramides in response to nutrient stress, 

specifically low folate conditions. Folate is a B-vitamin found in green leafy vegetables and 

fortified foods. Mandatory fortification with FA, the synthetic form of folate, began in the US in 

the 1990s to reduce the incidence of neural tube defects [39]. However in recent years, large 

epidemiological studies have found increased incidences of certain types of cancer after the 

introduction of mandatory fortification [45, 318] . Folate metabolism has also been connected to 

alterations in lipid metabolism, with conflicting results in both rodents and humans pointing to 

both beneficial effect and potentially negative effect on lipid metabolism when diets were 

supplemented with folic acid [48, 54, 55, 68, 69, 72, 319]. We have shown in cell culture that 

folate withdrawal from media or ectopic expression of folate-regulatory enzyme ALDH1L1 

results in a significant increase of CerS6 expression and levels of C16-Cer [12]. We also 

investigated this relationship in a mouse model to determine whether the folate stress similarly 

elevates C16:0-Cer levels in mouse liver. While we did not find a significant increase in hepatic 

C16:0-Cer levels in mice fed a folate deficient diet, many sphingolipid species were changed due 
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to lack of dietary folate (Ceramide Synthase 6 mediates sex-specific metabolic response to 

dietary folic acid supplementation, Molecular Metabolism, under revision).  

In the present study, we sought to assess how the long-term exposure to low or high 

dietary FA influences plasma ceramide levels in mice consuming a high fat diet and to evaluate 

the role of CerS6 in response to dietary alterations. We hypothesized that low dietary FA will 

elevate ceramide levels in response to nutrient stress with specific increases in C16-Cer, whereas 

high dietary FA will exert a beneficial effect on sphingolipid metabolism by decreasing the 

concentrations of lipotoxic ceramide species.  

Materials and Methods 

Animal husbandry 

All experiments were approved by the Institutional Animal Care and Use committee 

(IACUC) at the North Carolina Research Campus (NCRC). CerS6 KO mice were a generous gift 

from Dr. Ogretmen and were further backcrossed for at least 11 generations to C57BL/6NHsd 

mice from Envigo (Indianapolis, IN). Male and female mice heterozygous for CerS6 were bred 

to obtain CerS6 KO and WT littermates that were randomized to dietary groups at weaning. This 

study was part of a larger studying using the CerS6 KO model and as such, western blot 

confirmation of CerS6 protein in WT mice only can be found in Figure S4.1. Animals were 

group-housed in microisolator cages under standard conditions (12h light/dark cycle, 

temperature- and humidity-controlled conditions), and received ad libitum access to water and 

one of three purified synthetic diets. The protein sources (casein and L-cystine) were consistent 

across diets, as were sources of carbohydrate (corn starch, sucrose, maltodextrin) and fat 

(soybean oil and lard). All diets had high levels of fat: 58% of caloric value was from fat. The 

diets differed only in their folic acid content: 0 ppm in folate deficient diet (FD); 2 ppm in 

control folate diet (Ctrl); and 12 ppm in folate over-supplemented diet (FS). Diet information is 
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provided in Table S5.1. Mice were placed on one of the diets at weaning and weighed each week 

for 16 weeks. All mice were fasted for 4 hours and body composition was assessed prior to 

euthanasia. 

Body composition 

Body composition (lean and fat mass) was assessed before animals were placed on diet 

and before necropsy using the EchoMRI-130 Body Composition Analyzer. 

LC-MS/MS analysis of sphingolipids 

Lipids from 75µL plasma were extracted [320] and the sphingolipid levels were 

measured by HPLC-MS/MS using methodology as previously described by the MUSC 

Lipidomics Shared Resource [252]. 

Statistical analysis 

For statistical analysis of differences between two groups Student’s t-test was performed 

using GraphPad software. For the statistical analysis of differences between three or more 

groups, one-way ANOVA was used with Sidak’s multiple comparisons test to determine 

differences between specific groups. Results were determined to be statistically significantly 

different at p<0.05. 

Results 

CerS6 KO mice accumulate less fat and gain less weight on high fat diet with additional effect of 

FA that differs between males and females 

Since the goal of our study was investigation of the effects of both low and high levels of 

FA on a high fat background, we conducted weekly monitoring of animal weight and measured 

body composition before and at the end of dietary exposure. Male WT mice, after 16 weeks on 

any level of dietary folate, weighed significantly more than their CerS6 KO counterparts (Fig 

5.1A). Additionally, the FD diet resulted in WT mice gaining significantly more weight than 
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those on Ctrl diet, but FS diet showed no significant difference from Ctrl in post-diet body 

weight (Fig 5.1A). However, when the changes in body weight were evaluated, both WT FD and 

WT FS mice gained significantly more weight than those on the Ctrl folate diet indicating a 

negative effect of both low and high folate levels in combination with high fat (Fig 5.1A). As 

hypothesized, all WT mice gained significantly more weight than the KO counterparts, in 

agreement with previous reports [205]. CerS6 KO mice also gained less weight on the FS diet 

reaching statistical significance only when compared to the FD diet. Measurements of fat mass 

showed significantly higher percent for WT mice on the FD and FS diets compared to 

corresponding groups of KO mice, but no significant difference was found between WT and KO 

mice on the Ctrl diet (Fig 5.1A).  

 
 

Figure 5.1 Low folic acid affected body weight in male WT mice (A) but did not affect 

female (B) or CerS6 KO mice. Data presented as mean + SEM, n=3-6. Solid bars, FD diet; 

Checkered bars, Control diet. Striped bars, FS diet. WT shown in black and KO shown in grey. *, p<0.05; 

**, p<0.01; ***, p<0.001; ****, p<0.0001, determined by One-way ANOVA with Sidak’s multiple 

comparisons test 
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Female mice exhibited a completely different pattern of weight gain and body 

composition response to dietary FA levels than males (Fig 5.1B). Wild-type females on the Ctrl 

and FS diet weighed more after 16 weeks on the diets compared to KO mice but this was not the 

case for the mice on the FD diet. Similarly, only WT mice on the Ctrl and FS diet had 

significantly more weight gain than their KO counterparts. Additionally, the WT Ctrl females 

gained significantly more weight than the WT FD mice, the opposite of what was seen in males. 

Similar to post-diet body weight, measures of post-diet % fat mass revealed a significant 

difference only between WT and KO on the Ctrl and FS diets indicating a potentially protective 

effect of the FD diet in females. 

Plasma ceramides demonstrated sex differences in response to folate supplementation 

Since plasma ceramides have been evaluated as possible biomarkers for disease states, 

we assessed plasma ceramides and other sphingolipids in order to determine how they respond to 

dietary intervention. In male WT mice, the FD diet elevated both C16-dhCer and C16-Cer, but not 

C14-Cer, while CerS6 KO mice were protected from increases in these species (Fig 5.2A). There 

were several Cer species that demonstrated a U-shaped response to FA, with increased levels on 

both the FD and FS diets in WT mice (Fig 5.2B). Interestingly, the CerS6 KO mice on these 

diets were protected from significant increases indicating that CerS6 affects more than just C14- 

and C16-Cer in the plasma.  
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Figure 5.2 In WT males, both plasma CerS6-produced ceramides (A) and very-long-chain 

ceramides (B) demonstrate U-shaped response to FA. Data presented as mean + SEM, n=3-5. 

Solid bars, FD diet; Checkered bars, Control diet. Striped bars, FS diet. WT shown in black and KO 

shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001, determined by One-way ANOVA 

with Sidak’s multiple comparisons test 

 

Female mice had a different response to the FA content in their diet (Fig 5.3). C16-Cer 

was elevated in animals on Ctrl and FS diets, but not on FD diet. There was no difference in C16-

dhCer concentrations in female WT mice, but the CerS6 KO mice were protected from C16-Cer 

accumulation similar to male CerS6 KO mice. C24:0- and total ceramides were also elevated in 

the WT Ctrl mice but overall, there were few changes in plasma ceramides due to dietary folic 

acid.  
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Figure 5.3 Female mice demonstrated bell-shaped response to FA and were more resistant 

to changes in ceramides. Data presented as mean + SEM, n=3-5. Solid bars, FD diet; Checkered bars, 

Control diet. Striped bars, FS diet. WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; 

***, p<0.001; ****, p<0.0001, determined by One-way ANOVA with Sidak’s multiple comparisons test 
 

Plasma sphingomyelins increase on folate-deficient diet in males but not in females 

Ceramides are at the center of sphingolipid metabolism and serve as precursors for 

complex sphingolipids [1] with sphingomyelin being one of them. Sphingomyelins are formed 

from ceramides via the transfer of a phosphocholine head group from phosphatidylcholine. In 

male mice, sphingomyelin species produced from CerS6-specific ceramides were the most 

significantly changed species (Fig 5.4).   
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Figure 5.4 FD diet elevated SM species in WT male mice. Data presented as mean + SEM, n=5. 

Solid bars, FD diet; Checkered bars, Control diet. Striped bars, FS diet. WT shown in black and KO 

shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001, determined by One-way ANOVA 

with Sidak’s multiple comparisons test 

 

C14-SM was elevated in WT FD compared to WT Ctrl and FS mice (75% and 45% 

respectively) and CerS6 KO mice had significantly lower levels of this SM (69-83%) on all diets. 

Similar response was seen for C16-SM and total SM levels. On the FD diet, C18:1-, C20:0-, and 

C20:1-SM were significantly higher in WT compared to the CerS6 KO FD mice. Overall, male 

CerS6 KO mice tended to have lower levels of most SM species but these differences were not 

statistically significant. 

  In female WT mice, C14- and C16- and total SM were significantly elevated on the Ctrl 

and FS diets compared to FD diet, but no FA effect was seen among the KO mice on any diets 

(Fig 5.5). However, other SM species, including C22-, C24- and C26-SM, were higher in CerS6 

KO compared to WT mice on the Ctrl and FS diets. On the contrary, male CerS6 KO mice did 
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not have any SM species that was higher in KO than in WT animals, further underscoring 

differences between sexes in response to dietary folic acid.  

 

Figure 5.5 Female mice demonstrated fewer changes in SM species however some were 

increased due to absence of CerS6. Data presented as mean + SEM, n=5. Solid bars, FD diet; 

Checkered bars, Control diet. Striped bars, FS diet. WT shown in black and KO shown in grey. *, p<0.05; 

**, p<0.01; ***, p<0.001; ****, p<0.0001, determined by One-way ANOVA with Sidak’s multiple 

comparisons test 

 

Hexosyl-Ceramides were elevated on both low and high FA diets in males only 

 Hexosyl-ceramides, including glucosyl- and galactosyl-ceramides, represent another 

group of complex sphingolipids made via the addition of a glucose or galactose headgroup to 

ceramide, respectively. As ceramides can be shunted to the synthesis of HexCer species, the 

plasma HexCer levels may also be important determinants of sphingolipid balance in response to 

nutrient stress. Similar to the aforementioned sphingolipids, C16-HexCer was significantly lower 

in CerS6 KO mice irrespective of dietary FA (Fig 5.6).  
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Figure 5.6 Plasma HexCer species increased in response to low and high folate in male WT 

mice. Data presented as mean + SEM, n=5. Solid bars, FD diet; Checkered bars, Control diet. Striped 

bars, FS diet. WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; ****, 

p<0.0001, determined by One-way ANOVA with Sidak’s multiple comparisons test 

 

The FD and FS diets in WT mice increased the levels of C16-HexCer compared to Ctrl 

diet (however not reaching statistical significance), while increases for C20-, C22-, and Total 

HexCer were significant. Interestingly, CerS6 KO mice on the FS diet exhibited significantly 

increased plasma levels of C20-, C22- and total HexCer, whereas the KO mice on the other two 

diets did not.  

 Hexosyl-Ceramides in female WT mice reflected the levels of ceramides (Fig 5.7) with 

significantly higher levels on the Ctrl diet but no significant difference between FD and FS diets. 

Additionally, C16-HexCer at all FA levels were higher in WT mice compared to KO mice. C22- 

and Total HexCer levels were the highest in WT Ctrl mice. Moreover, C22-HexCer were the 

highest in KO FS animals, similar to males but overall, there were fewer changes in HexCer 

species in females, in line with all previously discussed sphingolipids, thus demonstrating 

resistance to change in response to diet.  
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Figure 5.7 FD diet prevented accumulation of several HexCer species in female mice. Data 

presented as mean + SEM, n=5. Solid bars, FD diet; Checkered bars, Control diet. Striped bars, FS diet. 

WT shown in black and KO shown in grey. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001, 

determined by One-way ANOVA with Sidak’s multiple comparisons test 

 

Discussion 

In this study, we evaluated the sphingolipid response to both low and high FA on the 

background of high dietary fat consumption in WT and CerS6 KO mice. Overall, our results 

confirmed the central hypothesis that dietary folate stress will result in sphingolipid changes 

mediated by CerS6 and C16-Cer. Several ceramide species, C20- and C22:1-Cer, were increased in 

plasma of male mice, along with C16-Cer and C16-dhCer, resulting in approximately 2.5-fold 

increase in Total Cer levels (Fig 5.2). Contrary to our expectations, mice on FS diet also had 

elevated C16-Cer and C16-dhCer which did not reach statistical significance as well as 2.5-3-fold 

increase in C20- and C22:1-Cer (Fig 5.2). This U-shape response of C16-, as well as of C20- and 

C22:1-Cer was mediated by CerS6, because CerS6 KO mice did not show such response to dietary 

FA changes. Importantly, while C16-Cer and C16-dhCer levels were 4-10-fold lower in KO 

plasma compared to WT and did not change in response to dietary FA, the C20- and C22:1-Cer did 

not differ significantly between WT control and KO plasma on any diet. This response pattern 

indicates that FA itself did not affect CerS4-generated ceramides in the absence of CerS6 but the 

FA-induced increase in CerS4 products was due to CerS6. Heterodimerization of CerS6 with 

CerS2 and CerS5 with alteration of their activities has been demonstrated [133], but effects on 
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CerS4 are not known. Since acyl chain specificities of CerS4 and CerS2 overlap with regard to 

C22-acyl-CoA, it is possible that C22:1-Cer increase could be driven by CerS6 heterodimerization 

with CerS2 [44]. Any upregulation of ceramides in males was abrogated by CerS6 KO, 

underscoring the role of CerS6 as a mediator of dietary response.  

Remarkably, response to alterations of dietary FA in females was completely different 

than in males. Both FD and FS diets reduced C16-, C22-, C24- and total Cer levels in WT mice 

(bell shape, Fig 5.3). Moreover, along with about 6-10-fold lower levels of C16-Cer in CerS6 KO 

plasma compared to WT, the C22-, C24- and Total Cer were at about the same levels in WT and 

KO mice on the FD diet, but 2-3 times higher in WT compared to KO  samples on control and 

FS diets. Thus, the response of C16-Cer to FD and FS diets was mediated by CerS6, however for 

the other species, relationship is not clear. Another important difference between two sexes was 

3.5 and ~ 2-fold difference in total Cer levels between sexes on FD and FS diets respectively, 

with relatively similar levels on Ctrl diet. Altogether, our data indicate that female mice respond 

differently to FA intake on HF diet than male mice and that CerS6 may have a less significant 

role in controlling plasma sphingolipid profiles of female mice, thus making them less sensitive 

to dietary alterations. A protective effect from obesity and metabolic syndrome has been reported 

in several studies investigating female mice or male mice given estrogen and their response to 

dietary interventions including dietary restriction [321], high-fat diet [322, 323], and protein 

dilution [324]. 

Plasma sphingomyelin levels also responded to change in folate supplementation and the 

response to FA was also different in males and females (Fig 5.4, Fig 5.5). In WT male mice, 

response of SM species to FA was reminiscent of the ceramide response.  Lack of response to 

folate and 4-6-times lower levels of C14- and C16-sphingomyelins in CerS6 KO mice are 
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consistent with our hypothesis that CerS6 mediates adaptation to dietary folate in whole animal. 

C18- and C20-SM which demonstrated an increase in response to low dietary FA in WT mice did 

not show significant differences between WT mice on Ctrl diet or in KO mice on any diet. This 

indicates that changes observed in response to low FA in WT animals are caused by response of 

CerS6. In female mice, plasma SM were not changed by folate supplementation, with exception 

of C14-SM, which was lower on FD diet and increased with increase in FA (Fig 5.5). 

Significantly lower plasma levels of C14- and C16-SM (3-4-fold) in KO mice compared to WT 

point to CerS6-produced ceramides as the main contributors to the plasma sphingomyelin pools. 

Interestingly, levels of C22-, C24- and C26-SM were higher in KO versus WT females and did not 

show response to dietary FA for either genotype. These data indicate that female plasma 

sphingomyelins are less responsive to dietary effects. 

Hexosyl-Ceramides, representing combined pools of glucosyl- and galactosyl-ceramides, 

were changed with alterations in dietary FA and these changes followed the changing patterns of 

corresponding ceramides in male and female WT mice. Male WT mice demonstrated a U-shaped 

response to increasing levels of FA. Interestingly, KO male mice also showed response to dietary 

FA, but only to high folate supplementation.  At the same time, female WT mice showed bell-

shaped response to dietary FA, while in KO mice HexCer levels showed direct correlation with 

dietary FA such that as FA levels increased, so did the concentration of several HexCer species. 

While the mechanisms for significant increase of HexCer at high folate levels are not known, it 

is possible that the excess FA combined with HFD is causing alterations in glucose metabolism. 

Previous work from our lab exploring the effects of low and high FA diets in mice found altered 

carbohydrate metabolism as well as significantly increased levels of UDP-glucose (a substrate 

for glucosyl-ceramide biosynthesis) in CerS6 KO mice (data not published). Folic acid 
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supplementation has also been found to yield beneficial effects on blood glucose levels and 

insulin resistance in rat [325] and mouse studies [326]. DNA methylation and transcriptional 

regulation of genes involved in insulin signaling have been proposed as putative mechanisms 

linking folic acid and glucose metabolism [53]. It is also possible that HexCer species are less 

toxic compared to ceramides and conversion of ceramides to HexCer species protects tissues 

from deleterious effects of ceramide.  

    Our experiments also showed that male KO mice weighed significantly less than their 

WT controls, regardless of FA intake. Additionally, consumption of a diet that was lacking folate 

(FD) or too high in folate (FS) led to additional weight gain over the duration of the study. 

Interestingly, the low folate diet also led to increased weight gain in CerS6 KO mice which was 

not expected. Previous studies have demonstrated that CerS5 or CerS6 knockout in mice, or 

pharmacological inhibition of C16:0-Cer, conferred protection from weight gain when fed a HF 

diet [4, 173, 205], which we expected to be more important in determining body weight FA 

content. Additionally, a previous study investigating dietary folic acid on a lower fat diet did not 

show any differences due to low folic acid in liver tissue of CerS6 KO mice (Ceramide Synthase 

6 mediates sex-specific metabolic response to dietary folic acid supplementation, Molecular 

Metabolism, under revision). The combination of high fat content and low FA likely worked 

synergistically in regulation of body weight leading to increased weight gain even in CerS6 KO 

mice. Results presented herein show that low folate causes increase in weight gain in both WT 

and CerS6 KO male mice while high FA consumption increases body weight in WT mice only. 

It is likely that the FD and FS diets affect additional metabolic pathways supporting increased 

weight gain, including through AMPK, NADPH oxidase and acyl carnitine levels [54, 55, 72, 

76], however absence of these effects in CerS6 KO mice indicates that ceramides may also be 
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involved in responding to high folic acid consumption. The effect of folic acid combined with 

high fat diet consumption was quite different in female mice. The low (FD) folate diet prevented 

weight gain in female WT mice, while over-supplementation (FS) did not affect weight gain. No 

effect of folic acid on body weight was found in CerS6 KO mice indicating that in females 

CerS6 plays a critical role in fat metabolism and storage and this regulation is highly sex-

dependent.   

Conclusion 

Folate has been linked to lipid metabolism, but the results have been conflicting in rodent 

models. In human studies, obese patients are reported to have low folate levels in circulation [58-

60], independent of dietary intake [61] and studies have found an inverse association between 

serum folate levels and BMI [62].  Low maternal folate levels were also associated with an 

increased risk of obesity and IR and type 2 diabetes in the offspring later in life [63, 64]. In 

human studies, FA supplementation has been found to decrease insulin resistance and plasma 

levels of homocysteine while improving blood glucose control in obese patients with type 2 

diabetes [65-67]. Thus, decreased folate levels may affect susceptibility to metabolic syndrome 

[68, 69]. Though the mechanisms of these effects are not established, our data implicate 

sphingolipids as potential mediators of folate status effects on lipid metabolism and body 

composition. These findings also underscore the need to better understand both short and long-

term dietary factors that alter sphingolipid levels, especially as they are being increasingly 

considered as biomarkers and components of risk scores for diseases [211, 215, 216, 218, 219, 

327]. More importantly, dietary effects should be investigated in each sex separately and 

reference values for plasma ceramides should be determined for each sex in order to properly   
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evaluate the validity of plasma sphingolipids as biomarkers. Ceramides have been found to be 

modified by gastric bypass surgery [220], aerobic exercise [221] and statin use [217, 222] but 

there is a need to establish how sensitive the sphingolipid pools are to diet composition.  
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Supplementary Materials 

 
 

Table S5.1 Diet composition 

Diet Number (Teklad) TD.180092 TD.180093 TD.180094

Diet Name FD Ctrl FS

Caseine, Vitamin-Free 195.0 195.0 195.0

L-Cystine 3.0 3.0 3.0

Corn Starch 34.237 34.237 34.237

Sucrose 210.0 200.251 200.241

Maltodextrin 130.0 130.0 130.0

Soybean Oil 60.0 60.0 60.0

Lard 280.0 280.0 280.0

Cellulose 50.0 50.0 50.0

Mineral Mix (AIN-93G-MX (94046)) 35.0 35.0 35.0

TBHQ, antioxidant 0.012 0.012 0.012

Vitamin Mix (AIN-93-VX (94047)) 10.0 10.0

Niacin 0.03

Calcium Pantothenate 0.016

Pyridoxine HCl 0.007

Thiamin (81%) 0.006

Riboflavin 0.006

Biotin 0.0002

Vitamin B12 in mannitol (0.1% trituration) 0.025

Vitamin E (DL-alpha tocopheryl acetate (500 IU/g) 0.15

Vitamin A, palmitate (500,000 IU/g) 0.008

Vitamin D3, cholecalciferol (500,000 IU/g) 0.002

Vitamin K1, phylloquinone 0.0008

Folic Acid 0.01

Choline Bitartrate 2.5 2.5 2.5

% kcal from protein 13.6 13.6 13.6

% kcal from carbohydrate 28.3 28.3 28.3

% kcal from fat 58.2 58.2 58.2

kcal/g 5.3 5.3 5.3

Ingredient (g/kg)
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CHAPTER 6: SYNTHESIS 

The focus of this dissertation was to evaluate the changes in sphingolipid pools as a result 

of changes in dietary fat and folic acid consumption. Upon short-term dietary consumption of 

low FA, many changes were observed in sphingolipids and several other lipid classes. 

Interestingly, the levels of FA in diet significantly impacted the concentrations of other vitamins, 

including fat-soluble vitamins in both WT and CerS6 KO mice in a sex-dependent manner (Ch. 

III). Many phenotypic and biochemical changes we observed differed according to sex, but there 

were significant differences due to changes in dietary FA concentrations, even under short-term 

FA exposure on a relatively low-fat diet. We next challenged WT and CerS6 KO mice by 

feeding them a high fat diet for 16 weeks to assess long-term effects of dietary intervention (Ch. 

IV). CerS6 KO mice were protected from diet-induced weight gain, hepatic lipid droplet 

accumulation, and from elevation of many plasma sphingolipid species, not just those with C14 

and C16 backbones. This indicates a strong contribution of CerS6 to the sphingolipid profiles of 

plasma, as opposed to CerS5, which also produces C14 and C16 sphingolipids. Finally, the mice 

were challenged by a combination of HFD and low or high FA intake to assess how FA may 

alter sphingolipid levels in the presence of a high fat diet (Ch. V). Both male and female CerS6 

KO mice were protected from weight gain and accumulation of some sphingolipid species as 

seen in the previous study. However, male and female WT mice differed in their response to FA 

with females demonstrating decreased weight gain when fed the FD diet whereas males were 

similarly sensitive to low or high FA with both significantly elevating plasma sphingolipid levels 

and some measures of body composition.  Taken together, the work in this dissertation provides 
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strong evidence that hepatic and plasma sphingolipid pools are sensitive to both short- and long-

term dietary intake of folic acid and fat and that this response differs depending on sex.  

Contributions to Sphingolipid Field 

This dissertation contributes to the growing field of sphingolipid metabolism in several 

areas. First, we have established that sphingolipids are involved in nutrient sensing and response 

in a whole-animal model. Much of the work investigating specific sphingolipid response to 

nutrient presence or withdrawal have been performed using in vitro methods. While this can 

provide detailed, mechanistic data, the results are difficult to translate to humans. In the present 

studies, we demonstrated that sphingolipids, specifically ceramides, sphingomyelins, and 

glucosyl-/galactosyl-ceramides respond to changes in both dietary folic acid and fat content. 

Additionally, the studies were both short term (4 week) and longer-term (16 week) interventions, 

indicating that sphingolipids respond early (in less than four weeks) and these metabolic changes 

persist over the course of dietary exposure. We also demonstrated that FA affects sphingolipid 

metabolism when combined with HFD. Both low and high dietary folic acid raised several 

plasma sphingolipid species, which has been associated with increased risk of diseases, thus 

underscoring the importance of detailed evaluation of the effects of FA over-supplementation. 

Given that this work implicates sphingolipids as a possible connecting pathway between folate 

and lipid metabolism, future studies can include sphingolipid measurements to better assess how 

folate affects lipid metabolism. 

 Second, we have provided compelling data, including lipidomics, gene expression, and 

metabolomics, to demonstrate that male and female mice differ significantly in their response to 

dietary fat and FA. The differences in sphingolipid response to dietary intervention between 

sexes highlights the need to establish reference values for sphingolipids, specifically ceramides, 

if they are going to be utilized as biomarkers for disease states. An additional unexpected finding 
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was that the concentrations of other vitamins were altered in response to dietary intervention 

with FA and that this response differed between males and females. This finding was not 

anticipated, and our experiments were not designed to fully address or elucidate the possible 

mechanisms by which FA is affecting other vitamins, but they do provide clear data that warrant 

future studies investigating metabolic relationships between different vitamins.  

 Finally, we have contributed knowledge regarding the function of one of the isoforms of 

Ceramide Synthases, specifically CerS6. There are only a handful of studies that have utilized a 

knockout mouse model to understand the function of CerS6 in specific contexts. Here we have 

characterized the CerS6 KO mouse in its response to dietary changes by evaluating indirect 

calorimetry, gene expression, liver and plasma metabolome, and specific sphingolipid profiles. 

These data provide more insight into the role of CerS6 and its products in responding to dietary 

intervention and how those changes define sphingolipid balance. Our data will be used to inform 

future studies investigating the role of CerS6, as well as sphingolipids in general, in nutrient 

response, regulation of metabolism in different tissues, and how the balance of sphingolipids in 

liver and plasma affects physiological functions. 

Strengths and Limitations 

 Our studies possess several strengths in their design, enabling the potential to draw 

relevant conclusions. First, the use of a genetic mouse model allows for characterization of 

CerS6 without the side effects that accompany drug treatment, which was previously the best 

way of suppressing CerS activity. Knocking out CerS6 in the entire body also gives a better 

picture of ceramide metabolism at a broad level as ceramide pools from other tissues cannot 

compensate for the lack of C14- and C16-ceramides. Additionally, the use of dietary intervention 

studies for both short and long durations provide valuable insight into changes that occur due to 

long-term consumption of low or high FA and also informs on the acute effects and 
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compensatory changes in a short-term nutrient stress. The use of different diets to capture a range 

of macronutrient and micronutrient intake allowed for a better understanding of the role of CerS6 

in responding to both dietary fat and FA intake, especially considering that human consumption 

of both fat and FA varies greatly.  The metabolic profiling we undertook is also a strength of this 

study. Calorimetry data was not included in several studies investigating the relationship 

between ceramides and metabolic measures [4, 173, 232]. However we were able to measure 

energy expenditure, respiratory exchange ratio and food intake to gain a better understanding of 

whole body mouse metabolism in our knockout model, which is a step further than the previous 

study which also investigated CerS6 KO mice on a high fat diet [205]. Additionally, the 

metabolomics analysis for both liver and plasma tissues provides a much more complete picture 

of metabolism by focusing on the primary metabolizing organ, the liver, and the circulating 

plasma which delivers nutrients to all other tissues in the body. Further precise characterization 

of this mouse model was achieved through targeted measurement of three sphingolipid pools - 

ceramides, sphingomyelins, and hexosyl-ceramides - which provides more specific and 

informative data about changes in sphingolipids due to nutrient stress as opposed to just 

assessing ceramide profile alone. 

 However, these studies do have some limitations. Mouse models do not perfectly 

translate to human conditions or metabolism. The whole-body CerS6 KO mouse model allowed 

us to examine the effects of total ablation of CerS6 and consequently significantly lower C16-Cer 

levels, however the use of tissue-specific knockout would have been useful in assessing changes 

due to nutrient stress in each tissue. This would have enabled us to draw more specific 

conclusions about the utilization of folate and consequences of alterations in dietary folate as it 

relates to sphingolipid metabolism in specific tissues. An additional limitation of these studies 



 

144 

was the missing lactosyl-ceramide measurements. While we did measure glucosyl- and 

galactosyl-ceramide, lactosyl-ceramides are an additional pool that should be considered. 

Inhibition of glycosphingolipid synthesis has been found to reduce measures of atherosclerosis, 

including arterial stiffness, and lactosyl-ceramide levels were 3-fold higher in rabbits fed a 

Western diet for 90 days [303]. Finally, the use of an extremely high fat diet as the one used in 

this study is not translatable in most cases [313]. Human consumption patterns, behaviors, and 

decisions are extremely complex, and these features cannot be captured in a controlled mouse 

study; however, we can still draw from these studies in order to inform human studies.  

Future Directions 

Specifically related to this dissertation and the data presented herein, future work 

includes transcriptomics analysis of liver tissue to shed light on the mechanisms underlying our 

findings. Additionally, quantifying both mRNA and protein expression of CerS isoforms in 

several tissues will be extremely useful in understanding CerS distribution as a result of our 

dietary intervention and also will add to the literature seeking to characterize CerS in mice.  

While the field of sphingolipid metabolism is diverse, there are three specific areas this 

field should address that are related to the nutrition-sphingolipid connection we established in 

this dissertation. First, we need to better understand how sphingolipids respond to diet both in 

terms of specific nutrients and dietary patterns. Despite dietary intake of ceramides being 

relatively low compared to endogenous synthesis, these studies, in addition to others, 

demonstrate that hepatic and plasma ceramides respond to diet. Therefore, it is possible that there 

are dietary components or overall dietary patterns that may be more beneficial and improve 

ceramide profiles. One priority within this endeavor should be an assessment of how fatty acid 

composition affects sphingolipid metabolites. Ceramide, the hub of sphingolipid metabolism, is 

synthesized from palmitate and serine and the increased availability of palmitate from diet is 
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associated with obesity and IR [328, 329]. Therefore, this step in the biosynthetic pathway is 

relevant for investigation of whether the dietary interventions could reduce levels of ceramides 

by modulating availability of palmitate. Studies investigating the types of fatty acids (saturated 

versus unsaturated) that are used in the diet could also provide relevant information about 

differential effects in systemic or tissue ceramide levels as saturated fatty acids are required for 

synthesis of the sphingosine backbone of ceramide [136]. Additionally, gaining a better 

understanding of how sphingolipid pools respond to dietary components including vitamins and 

minerals, especially those often supplemented in humans, would provide valuable information 

about how diet can influence sphingolipid metabolism. 

Second, large-scale studies should be conducted to establish reference values for 

ceramide species. A growing number of studies are investigating possible associations between 

sphingolipids and risk for diseases, however, there are currently no established values for plasma 

concentrations of specific sphingolipids. They are also not used as biomarkers at this time, but 

there is a growing conversation about their potential usefulness in this area. Therefore, the goal 

in this regard is to establish reference values of species of interest in the population, including 

stratification by sex, ethnicity, and age, with studies including relevant dietary information as 

well. 

Third, more studies should investigate the contribution of other CerS isoforms in 

mediating the effects of diet. While our studies specifically investigated Ceramide Synthase 6, it 

is well-established that CerS isoforms heterodimerize and therefore other CerS are likely affected 

by the absence of CerS6 protein. Additionally, as ceramide inhibitors or drugs that interfere with 

sphingolipid metabolism gain attention and begin to be tested and developed as therapeutics, it is 

imperative to have a better grasp on the dynamics of sphingolipid metabolism in terms of protein 
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expression, metabolite levels, and fluxes between sphingolipid pools. If a CerS6 inhibitor is 

developed and proven to be effective in reducing the lipotoxic C16-ceramide levels, a better 

understanding of the other isoforms and the relationship between proteins and metabolites will 

ultimately provide better information for managing ceramide concentrations, in addition to any 

possible consequences of changes in diet. 
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